Akatuki25's picture
Add HF Dataset reference audio support
ab1cada
"""
Seed-VC Streaming API Server
architecture.md と model_ref.md に基づいて実装
"""
import io
import os
import sys
import time
import uuid
from typing import Optional, Dict
from argparse import Namespace
import numpy as np
import soundfile as sf
import librosa
import torch
import torchaudio
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import Response
from pydantic import BaseModel
from huggingface_hub import hf_hub_download
# Seed-VC
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'seed-vc'))
# Hugging Face cache directory (absolute path)
cache_dir = '/app/checkpoints'
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['HF_HUB_CACHE'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
# MPSを無効化してCPUを強制
import torch
torch.backends.mps.is_available = lambda: False
from inference import load_models
# =============================================================================
# Configuration (architecture.md Section 5)
# =============================================================================
DEFAULT_SAMPLE_RATE = 16000
DEFAULT_CHUNK_LEN_MS = 1000
DEFAULT_OVERLAP_MS = 200
SESSION_EXPIRE_SEC = 600
# model_ref.md Section 3.1
# Hugging Face Hubから参照音声をダウンロード
# リポジトリ: Akatuki25/seed-vc-ref-audios (dataset)
DEFAULT_REF_PRESET = "default_female"
REF_PRESETS = {
"default_female": ("Akatuki25/seed-vc-ref-audios", "default_female.wav"),
"default_male": ("Akatuki25/seed-vc-ref-audios", "default_male.wav"),
}
# ダウンロード済み参照音声のキャッシュ
downloaded_ref_cache = {}
# =============================================================================
# Global Variables
# =============================================================================
# MPSは避ける(seed-vcとの互換性問題)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Seed-VCモデル (inference.py load_models()の戻り値)
model = None
semantic_fn = None
f0_fn = None
vocoder_fn = None
campplus_model = None
to_mel = None
mel_fn_args = None
model_sr = 22050
# =============================================================================
# Session State (architecture.md Section 4.1)
# =============================================================================
class SessionState:
def __init__(self, sample_rate: int, tgt_speaker_id: Optional[str] = None):
self.sample_rate = sample_rate
self.tgt_speaker_id = tgt_speaker_id
self.last_output_tail: Optional[np.ndarray] = None
# model_ref.md Section 3: 参照音声の管理
self.ref_audio_tensor = None # 参照音声 (model_sr, float tensor)
self.ref_mel = None
self.ref_semantic = None
self.style_embed = None
self.last_access_ts = time.time()
self.chunk_len_ms = DEFAULT_CHUNK_LEN_MS
self.overlap_ms = DEFAULT_OVERLAP_MS
SESSIONS: Dict[str, SessionState] = {}
# =============================================================================
# FastAPI App
# =============================================================================
app = FastAPI(title="Seed-VC Streaming API", version="1.0.0")
@app.on_event("startup")
async def startup_event():
"""モデルロード (architecture.md Section 4.3.1)"""
global model, semantic_fn, f0_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args, model_sr
print(f"Device: {device}")
print("Loading Seed-VC models...")
# inference.pyのload_modelsをそのまま使用
args = Namespace(
f0_condition=False, # model_ref.md: 22050Hz系を使う
checkpoint=None,
config=None,
fp16=False
)
model, semantic_fn, f0_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args = load_models(args)
model_sr = mel_fn_args['sampling_rate']
print(f"Models loaded! SR={model_sr}")
# =============================================================================
# Pydantic Models (architecture.md Section 3.2)
# =============================================================================
class SessionCreateRequest(BaseModel):
sample_rate: int = DEFAULT_SAMPLE_RATE
tgt_speaker_id: Optional[str] = None
ref_preset_id: Optional[str] = None
use_uploaded_ref: bool = False
chunk_len_ms: int = DEFAULT_CHUNK_LEN_MS
overlap_ms: int = DEFAULT_OVERLAP_MS
class SessionCreateResponse(BaseModel):
session_id: str
sample_rate: int
chunk_len_ms: int
overlap_ms: int
class SessionEndRequest(BaseModel):
session_id: str
# =============================================================================
# Utility Functions
# =============================================================================
def load_wav_to_numpy(file_bytes: bytes, target_sr: int) -> tuple[np.ndarray, int]:
"""WAVファイルをnumpy配列に変換"""
audio, sr = sf.read(io.BytesIO(file_bytes))
if len(audio.shape) > 1:
audio = audio.mean(axis=1)
if sr != target_sr:
audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sr)
sr = target_sr
if audio.dtype in (np.float32, np.float64):
audio = (audio * 32767).astype(np.int16)
return audio, sr
def numpy_to_wav_bytes(audio: np.ndarray, sr: int) -> bytes:
"""numpy配列をWAVバイト列に変換"""
buffer = io.BytesIO()
sf.write(buffer, audio, sr, format="WAV", subtype="PCM_16")
buffer.seek(0)
return buffer.read()
def crossfade(prev_tail: Optional[np.ndarray], new_chunk: np.ndarray, fade_len: int) -> np.ndarray:
"""クロスフェード (architecture.md Section 4.2.1)"""
if prev_tail is None:
return new_chunk
fade_len = min(fade_len, len(prev_tail), len(new_chunk))
if fade_len <= 0:
return new_chunk
fade_in = np.linspace(0.0, 1.0, fade_len, endpoint=True)
fade_out = 1.0 - fade_in
mixed_head = (prev_tail[-fade_len:] * fade_out + new_chunk[:fade_len] * fade_in).astype(np.int16)
tail = new_chunk[fade_len:]
return np.concatenate([mixed_head, tail])
def download_ref_preset(preset_id: str) -> str:
"""
Hugging Face Hubから参照音声をダウンロード
Returns: ローカルファイルパス
"""
if preset_id in downloaded_ref_cache:
return downloaded_ref_cache[preset_id]
if preset_id not in REF_PRESETS:
raise ValueError(f"Unknown preset_id: {preset_id}")
repo_id, filename = REF_PRESETS[preset_id]
print(f"Downloading reference audio from {repo_id}/{filename}...")
local_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type="dataset",
cache_dir=cache_dir
)
downloaded_ref_cache[preset_id] = local_path
print(f"Downloaded to {local_path}")
return local_path
def prepare_reference_audio(audio_path: str, state: SessionState):
"""
参照音声を準備 (model_ref.md Section 3)
inference.py の main() と同じロジック
"""
# 参照音声をロード
ref_audio, file_sr = librosa.load(audio_path, sr=model_sr)
ref_audio = ref_audio[:model_sr * 25] # 25秒まで
# tensorに変換
ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
state.ref_audio_tensor = ref_audio_tensor
# mel spectrogram
state.ref_mel = to_mel(ref_audio_tensor)
# Whisper semantic features
ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, model_sr, 16000)
state.ref_semantic = semantic_fn(ref_waves_16k)
# CAMPPlus style embedding
feat = torchaudio.compliance.kaldi.fbank(
ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000
)
feat = feat - feat.mean(dim=0, keepdim=True)
state.style_embed = campplus_model(feat.unsqueeze(0))
print(f"Reference prepared: mel={state.ref_mel.shape}, semantic={state.ref_semantic.shape}")
def seed_vc_infer(chunk_np: np.ndarray, chunk_sr: int, state: SessionState) -> np.ndarray:
"""
Seed-VCで音声変換 (architecture.md Section 4.3.2)
inference.py main()のロジックを使用
"""
# int16 -> float32
if chunk_np.dtype == np.int16:
source_audio = chunk_np.astype(np.float32) / 32768.0
else:
source_audio = chunk_np.astype(np.float32)
# model_sr にリサンプル
if chunk_sr != model_sr:
source_audio = librosa.resample(source_audio, orig_sr=chunk_sr, target_sr=model_sr)
# tensor化
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
# 16kHz変換してWhisper特徴抽出
converted_waves_16k = torchaudio.functional.resample(source_audio, model_sr, 16000)
S_alt = semantic_fn(converted_waves_16k)
# mel spectrogram
mel = to_mel(source_audio.to(device).float())
# target lengths
target_lengths = torch.LongTensor([mel.size(2)]).to(device)
target2_lengths = torch.LongTensor([state.ref_mel.size(2)]).to(device)
# length regulator (inference.py line 354-360)
with torch.no_grad():
cond, _, _, _, _ = model.length_regulator(
S_alt, ylens=target_lengths, n_quantizers=3, f0=None
)
prompt_condition, _, _, _, _ = model.length_regulator(
state.ref_semantic, ylens=target2_lengths, n_quantizers=3, f0=None
)
# 条件結合
cat_condition = torch.cat([prompt_condition, cond], dim=1)
# CFM inference (inference.py line 373-376)
with torch.no_grad():
vc_target = model.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(device),
state.ref_mel,
state.style_embed,
None,
10, # diffusion_steps
inference_cfg_rate=0.7
)
# プロンプト部分削除
vc_target = vc_target[:, :, state.ref_mel.size(-1):]
# Vocoder (inference.py line 378)
with torch.no_grad():
vc_wave = vocoder_fn(vc_target.float()).squeeze()
vc_wave = vc_wave[None, :]
# numpy変換
output_wave = vc_wave[0].cpu().numpy()
# int16に戻す
output_int16 = (output_wave * 32767).clip(-32768, 32767).astype(np.int16)
return output_int16
# =============================================================================
# Endpoints (architecture.md Section 3.2)
# =============================================================================
@app.get("/health")
async def health_check():
"""3.2.1 GET /health"""
return {"status": "ok"}
@app.post("/session", response_model=SessionCreateResponse)
async def create_session(body: SessionCreateRequest):
"""
3.2.2 POST /session
model_ref.md Section 2.2(A)
"""
session_id = str(uuid.uuid4())
state = SessionState(
sample_rate=body.sample_rate,
tgt_speaker_id=body.tgt_speaker_id
)
state.chunk_len_ms = body.chunk_len_ms
state.overlap_ms = body.overlap_ms
# 参照音声設定 (model_ref.md Section 3.2)
if not body.use_uploaded_ref:
preset_id = body.ref_preset_id or DEFAULT_REF_PRESET
if preset_id is None:
raise HTTPException(status_code=400, detail="ref_preset_id or use_uploaded_ref=true required")
wav_path = download_ref_preset(preset_id)
prepare_reference_audio(wav_path, state)
SESSIONS[session_id] = state
return SessionCreateResponse(
session_id=session_id,
sample_rate=body.sample_rate,
chunk_len_ms=body.chunk_len_ms,
overlap_ms=body.overlap_ms,
)
@app.post("/session/ref")
async def upload_ref_audio(
session_id: str = Form(...),
ref_audio: UploadFile = File(...)
):
"""
model_ref.md Section 2.2(B)
"""
if session_id not in SESSIONS:
raise HTTPException(status_code=400, detail="Invalid session_id")
state = SESSIONS[session_id]
# 一時ファイル保存
import tempfile
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await ref_audio.read()
tmp.write(content)
tmp_path = tmp.name
try:
prepare_reference_audio(tmp_path, state)
finally:
os.unlink(tmp_path)
state.last_access_ts = time.time()
return {"status": "ok"}
@app.post("/chunk")
async def process_chunk(
session_id: str = Form(...),
chunk_id: int = Form(...),
audio: UploadFile = File(...)
):
"""
3.2.3 POST /chunk
architecture.md Section 3.2.3 サーバ内部処理フロー
"""
if session_id not in SESSIONS:
raise HTTPException(status_code=400, detail="Invalid session_id")
state = SESSIONS[session_id]
if chunk_id < 0:
raise HTTPException(status_code=400, detail="chunk_id must be non-negative")
# Step 2: 音声読み込み
audio_bytes = await audio.read()
chunk_np, chunk_sr = load_wav_to_numpy(audio_bytes, target_sr=state.sample_rate)
# Step 3: サンプルレートチェック
if chunk_sr != state.sample_rate:
raise HTTPException(
status_code=400,
detail=f"Sample rate mismatch: expected {state.sample_rate}, got {chunk_sr}"
)
# Step 4: Seed-VCで変換
converted = seed_vc_infer(chunk_np, chunk_sr, state)
# Step 5: クロスフェード
fade_len = int(model_sr * state.overlap_ms / 1000)
output = crossfade(state.last_output_tail, converted, fade_len)
# Step 6: tail更新
if len(output) >= fade_len:
state.last_output_tail = output[-fade_len:].copy()
else:
state.last_output_tail = output.copy()
state.last_access_ts = time.time()
# Step 7: WAVエンコード
wav_bytes = numpy_to_wav_bytes(output, model_sr)
return Response(
content=wav_bytes,
media_type="audio/wav",
headers={"X-Chunk-Id": str(chunk_id)}
)
@app.post("/end")
async def end_session(body: SessionEndRequest):
"""3.2.4 POST /end"""
SESSIONS.pop(body.session_id, None)
return {"status": "ended"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)