Uploaded support files
Browse files- templates/report_styles.css +6 -0
- templates/report_template.md +26 -0
- tools/__init__.py +0 -0
- tools/explain_tool.py +44 -0
- tools/predict_tool.py +32 -0
- tools/report_tool.py +25 -0
- tools/sql_tool.py +49 -0
- utils/config.py +21 -0
- utils/hf_io.py +0 -0
- utils/tracing.py +30 -0
templates/report_styles.css
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
body { font-family: system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif; padding: 24px; line-height: 1.5; }
|
| 2 |
+
h1,h2,h3 { margin-top: 1.2em; }
|
| 3 |
+
code, pre { background: #f6f8fa; padding: 2px 4px; border-radius: 4px; }
|
| 4 |
+
table { border-collapse: collapse; width: 100%; }
|
| 5 |
+
th, td { border: 1px solid #ddd; padding: 8px; }
|
| 6 |
+
th { background: #fafafa; }
|
templates/report_template.md
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Insight Report
|
| 2 |
+
|
| 3 |
+
**User Query**: {{ user_query }}
|
| 4 |
+
|
| 5 |
+
**Plan**: {{ plan.steps }}
|
| 6 |
+
**Rationale**: {{ plan.rationale }}
|
| 7 |
+
|
| 8 |
+
{% if sql_preview %}
|
| 9 |
+
## SQL Preview
|
| 10 |
+
{{ sql_preview }}
|
| 11 |
+
{% endif %}
|
| 12 |
+
|
| 13 |
+
{% if predict_preview %}
|
| 14 |
+
## Predictions Preview
|
| 15 |
+
{{ predict_preview }}
|
| 16 |
+
{% endif %}
|
| 17 |
+
|
| 18 |
+
{% if explain_images.global_bar %}
|
| 19 |
+
## Global Feature Importance (SHAP)
|
| 20 |
+
<img src="{{ explain_images.global_bar }}" style="max-width: 100%;" />
|
| 21 |
+
{% endif %}
|
| 22 |
+
|
| 23 |
+
{% if explain_images.beeswarm %}
|
| 24 |
+
## SHAP Beeswarm
|
| 25 |
+
<img src="{{ explain_images.beeswarm }}" style="max-width: 100%;" />
|
| 26 |
+
{% endif %}
|
tools/__init__.py
ADDED
|
File without changes
|
tools/explain_tool.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import shap
|
| 4 |
+
import base64
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from ..utils.config import AppConfig
|
| 8 |
+
from ..utils.tracing import Tracer
|
| 9 |
+
|
| 10 |
+
class ExplainTool:
|
| 11 |
+
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 12 |
+
self.cfg = cfg
|
| 13 |
+
self.tracer = tracer
|
| 14 |
+
self._model = None
|
| 15 |
+
|
| 16 |
+
def _ensure_model(self):
|
| 17 |
+
if self._model is None:
|
| 18 |
+
import joblib
|
| 19 |
+
path = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="model.pkl", token=os.getenv("HF_TOKEN"))
|
| 20 |
+
self._model = joblib.load(path)
|
| 21 |
+
|
| 22 |
+
def _to_data_uri(self, fig) -> str:
|
| 23 |
+
buf = io.BytesIO()
|
| 24 |
+
fig.savefig(buf, format="png", bbox_inches="tight")
|
| 25 |
+
buf.seek(0)
|
| 26 |
+
return "data:image/png;base64," + base64.b64encode(buf.read()).decode()
|
| 27 |
+
|
| 28 |
+
def run(self, df: pd.DataFrame):
|
| 29 |
+
self._ensure_model()
|
| 30 |
+
# Use a small sample for speed on CPU Spaces
|
| 31 |
+
sample = df.sample(min(len(df), 500), random_state=42)
|
| 32 |
+
explainer = shap.Explainer(self._model, sample, feature_names=list(sample.columns))
|
| 33 |
+
shap_values = explainer(sample)
|
| 34 |
+
|
| 35 |
+
# Global summary plot
|
| 36 |
+
fig1 = shap.plots.bar(shap_values, show=False)
|
| 37 |
+
img1 = self._to_data_uri(fig1)
|
| 38 |
+
|
| 39 |
+
# Beeswarm (optional)
|
| 40 |
+
fig2 = shap.plots.beeswarm(shap_values, show=False)
|
| 41 |
+
img2 = self._to_data_uri(fig2)
|
| 42 |
+
|
| 43 |
+
self.tracer.trace_event("explain", {"rows": len(sample)})
|
| 44 |
+
return {"global_bar": img1, "beeswarm": img2}
|
tools/predict_tool.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import joblib
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from ..utils.config import AppConfig
|
| 6 |
+
from ..utils.tracing import Tracer
|
| 7 |
+
|
| 8 |
+
class PredictTool:
|
| 9 |
+
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 10 |
+
self.cfg = cfg
|
| 11 |
+
self.tracer = tracer
|
| 12 |
+
self._model = None
|
| 13 |
+
self._feature_meta = None
|
| 14 |
+
|
| 15 |
+
def _ensure_loaded(self):
|
| 16 |
+
if self._model is None:
|
| 17 |
+
path = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="model.pkl", token=os.getenv("HF_TOKEN"))
|
| 18 |
+
self._model = joblib.load(path)
|
| 19 |
+
meta = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="feature_metadata.json", token=os.getenv("HF_TOKEN"))
|
| 20 |
+
import json
|
| 21 |
+
with open(meta, "r") as f:
|
| 22 |
+
self._feature_meta = json.load(f)
|
| 23 |
+
|
| 24 |
+
def run(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 25 |
+
self._ensure_loaded()
|
| 26 |
+
use_cols = self._feature_meta.get("feature_order", list(df.columns))
|
| 27 |
+
X = df[use_cols].copy()
|
| 28 |
+
preds = self._model.predict_proba(X)[:, 1] if hasattr(self._model, "predict_proba") else self._model.predict(X)
|
| 29 |
+
out = df.copy()
|
| 30 |
+
out[self._feature_meta.get("prediction_column", "prediction")] = preds
|
| 31 |
+
self.tracer.trace_event("predict", {"rows": len(out)})
|
| 32 |
+
return out
|
tools/report_tool.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from jinja2 import Environment, FileSystemLoader
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from ..utils.tracing import Tracer
|
| 5 |
+
|
| 6 |
+
class ReportTool:
|
| 7 |
+
def __init__(self, cfg, tracer: Tracer):
|
| 8 |
+
self.cfg = cfg
|
| 9 |
+
self.tracer = tracer
|
| 10 |
+
self.env = Environment(loader=FileSystemLoader("templates"))
|
| 11 |
+
|
| 12 |
+
def render_and_save(self, user_query: str, sql_preview: pd.DataFrame | None, predict_preview: pd.DataFrame | None, explain_images: dict, plan: dict):
|
| 13 |
+
tmpl = self.env.get_template("report_template.md")
|
| 14 |
+
html = tmpl.render(
|
| 15 |
+
user_query=user_query,
|
| 16 |
+
plan=plan,
|
| 17 |
+
sql_preview=sql_preview.to_markdown(index=False) if sql_preview is not None else "",
|
| 18 |
+
predict_preview=predict_preview.to_markdown(index=False) if predict_preview is not None else "",
|
| 19 |
+
explain_images=explain_images,
|
| 20 |
+
)
|
| 21 |
+
out_path = f"report_{pd.Timestamp.utcnow().strftime('%Y%m%d_%H%M%S')}.html"
|
| 22 |
+
with open(out_path, "w", encoding="utf-8") as f:
|
| 23 |
+
f.write("<link rel=\"stylesheet\" href=\"templates/report_styles.css\">\n" + html)
|
| 24 |
+
self.tracer.trace_event("report", {"path": out_path})
|
| 25 |
+
return out_path
|
tools/sql_tool.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from typing import Optional
|
| 5 |
+
from ..utils.config import AppConfig
|
| 6 |
+
from ..utils.tracing import Tracer
|
| 7 |
+
|
| 8 |
+
class SQLTool:
|
| 9 |
+
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 10 |
+
self.cfg = cfg
|
| 11 |
+
self.tracer = tracer
|
| 12 |
+
self.backend = cfg.sql_backend # "bigquery" or "motherduck"
|
| 13 |
+
if self.backend == "bigquery":
|
| 14 |
+
from google.cloud import bigquery
|
| 15 |
+
from google.oauth2 import service_account
|
| 16 |
+
key_json = os.getenv("GCP_SERVICE_ACCOUNT_JSON")
|
| 17 |
+
if not key_json:
|
| 18 |
+
raise RuntimeError("Missing GCP_SERVICE_ACCOUNT_JSON secret")
|
| 19 |
+
creds = service_account.Credentials.from_service_account_info(
|
| 20 |
+
eval(key_json) if key_json.strip().startswith("{") else {}
|
| 21 |
+
)
|
| 22 |
+
self.client = bigquery.Client(credentials=creds, project=cfg.gcp_project)
|
| 23 |
+
elif self.backend == "motherduck":
|
| 24 |
+
import duckdb
|
| 25 |
+
token = self.cfg.motherduck_token or os.getenv("MOTHERDUCK_TOKEN")
|
| 26 |
+
db_name = self.cfg.motherduck_db or "default"
|
| 27 |
+
self.client = duckdb.connect(f"md:/{db_name}?motherduck_token={token}")
|
| 28 |
+
else:
|
| 29 |
+
raise RuntimeError("Unknown SQL backend")
|
| 30 |
+
|
| 31 |
+
def _nl_to_sql(self, message: str) -> str:
|
| 32 |
+
# Minimal NL2SQL heuristic; replace with your own mapping or LLM prompt.
|
| 33 |
+
# Expect users to include table names. Example: "avg revenue by month from dataset.sales"
|
| 34 |
+
m = message.lower()
|
| 35 |
+
if "avg" in m and " by " in m:
|
| 36 |
+
return "-- Example template; edit me\nSELECT DATE_TRUNC(month, date_col) AS month, AVG(metric) AS avg_metric FROM dataset.table GROUP BY 1 ORDER BY 1;"
|
| 37 |
+
# fallback: pass-through if user typed SQL explicitly
|
| 38 |
+
if re.match(r"^\s*select ", m):
|
| 39 |
+
return message
|
| 40 |
+
return "SELECT * FROM dataset.table LIMIT 100;"
|
| 41 |
+
|
| 42 |
+
def run(self, message: str) -> pd.DataFrame:
|
| 43 |
+
sql = self._nl_to_sql(message)
|
| 44 |
+
self.tracer.trace_event("sql_query", {"sql": sql, "backend": self.backend})
|
| 45 |
+
if self.backend == "bigquery":
|
| 46 |
+
df = self.client.query(sql).to_dataframe()
|
| 47 |
+
else:
|
| 48 |
+
df = self.client.execute(sql).fetch_df()
|
| 49 |
+
return df
|
utils/config.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
@dataclass
|
| 5 |
+
class AppConfig:
|
| 6 |
+
hf_model_repo: str
|
| 7 |
+
sql_backend: str # "bigquery" or "motherduck"
|
| 8 |
+
gcp_project: str | None = None
|
| 9 |
+
motherduck_db: str | None = None
|
| 10 |
+
motherduck_token: str | None = None
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@classmethod
|
| 14 |
+
def from_env(cls):
|
| 15 |
+
return cls(
|
| 16 |
+
hf_model_repo=os.getenv("HF_MODEL_REPO", "your-username/your-private-tabular-model"),
|
| 17 |
+
sql_backend=os.getenv("SQL_BACKEND", "motherduck"),
|
| 18 |
+
gcp_project=os.getenv("GCP_PROJECT"),
|
| 19 |
+
motherduck_db=os.getenv("MOTHERDUCK_DB", "default"),
|
| 20 |
+
motherduck_token=os.getenv("MOTHERDUCK_TOKEN")
|
| 21 |
+
)
|
utils/hf_io.py
ADDED
|
File without changes
|
utils/tracing.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
class Tracer:
|
| 6 |
+
def __init__(self, client=None, trace_url: Optional[str] = None):
|
| 7 |
+
self.client = client
|
| 8 |
+
self.trace_url = trace_url
|
| 9 |
+
|
| 10 |
+
@classmethod
|
| 11 |
+
def from_env(cls):
|
| 12 |
+
try:
|
| 13 |
+
from langfuse import Langfuse
|
| 14 |
+
pk = os.getenv("LANGFUSE_PUBLIC_KEY")
|
| 15 |
+
sk = os.getenv("LANGFUSE_SECRET_KEY")
|
| 16 |
+
host = os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com")
|
| 17 |
+
if pk and sk:
|
| 18 |
+
client = Langfuse(public_key=pk, secret_key=sk, host=host)
|
| 19 |
+
session = client.trace("tabular-agentic-xai")
|
| 20 |
+
return cls(client=session, trace_url=session.get_url() if hasattr(session, "get_url") else None)
|
| 21 |
+
except Exception:
|
| 22 |
+
pass
|
| 23 |
+
return cls()
|
| 24 |
+
|
| 25 |
+
def trace_event(self, name: str, payload: dict):
|
| 26 |
+
if self.client:
|
| 27 |
+
try:
|
| 28 |
+
self.client.event(name=name, input=json.dumps(payload))
|
| 29 |
+
except Exception:
|
| 30 |
+
pass
|