Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,24 @@
|
|
| 1 |
import json
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
-
from
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
MAX_NEW_TOKENS = 8192
|
| 9 |
MODEL_NAME = "Azure99/Blossom-V6.3-36B"
|
| 10 |
-
MODEL_GGUF_REPO = f"{MODEL_NAME}-GGUF"
|
| 11 |
-
MODEL_FILE = "blossom-v6.3-36b-q8_0.gguf"
|
| 12 |
-
MODEL_LOCAL_DIR = "./"
|
| 13 |
-
|
| 14 |
-
hf_hub_download(repo_id=MODEL_GGUF_REPO, filename=MODEL_FILE, local_dir=MODEL_LOCAL_DIR)
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 18 |
|
| 19 |
|
|
@@ -33,27 +38,31 @@ def get_messages(user, history):
|
|
| 33 |
|
| 34 |
@spaces.GPU(duration=120)
|
| 35 |
def chat(user, history, temperature, top_p, repetition_penalty):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
model_path=MODEL_FILE, n_gpu_layers=-1, flash_attn=True, n_ctx=16384
|
| 40 |
-
)
|
| 41 |
|
| 42 |
messages = get_messages(user, history)
|
| 43 |
print(f"Messages: {messages}")
|
| 44 |
-
input_ids = tokenizer.apply_chat_template(messages)
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
temperature=temperature,
|
| 47 |
top_p=top_p,
|
| 48 |
-
|
| 49 |
-
top_k=0,
|
| 50 |
-
stream=True,
|
| 51 |
-
max_tokens=MAX_NEW_TOKENS,
|
| 52 |
)
|
| 53 |
|
|
|
|
|
|
|
| 54 |
outputs = ""
|
| 55 |
-
for
|
| 56 |
-
outputs +=
|
| 57 |
yield outputs
|
| 58 |
|
| 59 |
|
|
|
|
| 1 |
import json
|
| 2 |
+
from threading import Thread
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoModelForCausalLM,
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
TextIteratorStreamer,
|
| 10 |
+
FineGrainedFP8Config,
|
| 11 |
+
)
|
| 12 |
|
| 13 |
MAX_NEW_TOKENS = 8192
|
| 14 |
MODEL_NAME = "Azure99/Blossom-V6.3-36B"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
MODEL_NAME,
|
| 18 |
+
torch_dtype="auto",
|
| 19 |
+
device_map="auto",
|
| 20 |
+
quantization_config=FineGrainedFP8Config(),
|
| 21 |
+
)
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 23 |
|
| 24 |
|
|
|
|
| 38 |
|
| 39 |
@spaces.GPU(duration=120)
|
| 40 |
def chat(user, history, temperature, top_p, repetition_penalty):
|
| 41 |
+
streamer = TextIteratorStreamer(
|
| 42 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 43 |
+
)
|
|
|
|
|
|
|
| 44 |
|
| 45 |
messages = get_messages(user, history)
|
| 46 |
print(f"Messages: {messages}")
|
| 47 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(
|
| 48 |
+
model.device
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
generation_kwargs = dict(
|
| 52 |
+
input_ids=input_ids,
|
| 53 |
+
streamer=streamer,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 56 |
temperature=temperature,
|
| 57 |
top_p=top_p,
|
| 58 |
+
repetition_penalty=repetition_penalty,
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
+
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
| 62 |
+
|
| 63 |
outputs = ""
|
| 64 |
+
for new_text in streamer:
|
| 65 |
+
outputs += new_text
|
| 66 |
yield outputs
|
| 67 |
|
| 68 |
|