Spaces:
Runtime error
Runtime error
File size: 18,152 Bytes
bee75b4 46d59fd b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 b1f6d9e bee75b4 4d17179 bee75b4 b1f6d9e bee75b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import pandas as pd
from datetime import datetime
#from openpyxl import load_workbook
from IPython.display import FileLink, display
from Eversense4_API_2 import Eversense4_API
import numpy as np
import random
from sklearn.preprocessing import MinMaxScaler
import pickle
import gradio as gr
import plotly.graph_objects as go
# Load credentials from environment variables
USERNAME = os.getenv("EVERSENSE_USERNAME", "pgautam@forbesmarshall.com")
PASSWORD = os.getenv("EVERSENSE_PASSWORD", "pranjal123@")
# Initialize API object
apiObj = Eversense4_API(host="https://eversense.forbesmarshall.com")
# Log in securely
apiObj.login(USERNAME, PASSWORD)
# Define start and end timestamps
start = datetime(2024, 12, 1) # Fixed start date
end = datetime.now() # Current time
startTS = int(start.timestamp() * 1000) # Convert to milliseconds
endTS = int(end.timestamp() * 1000)
#print("Start Timestamp:", startTS)
#print("End Timestamp:", endTS)
# Fetch telemetry data
keys = [
'CLD_TTL_JUICE_FLOW', 'CLD_SK1_FM1_FLOW', 'CLD_SK2_FM1_FLOW',
'CLD_SK3_FM1_FLOW', 'CLD_SK4_FM1_FLOW', 'CLD_SK5_FM1_FLOW', 'CLD_FT_TPS'
]
telemetry_response = apiObj.getDeviceDataValues(
'51f7d6d0-9dd0-11ef-9e72-3915b0e66e63',
keys=keys,
startTS=startTS,
endTS=endTS,
interval=60000,
limit=500000
)
# Process data
df = apiObj.processData(telemetry_response)
# Convert all columns except 'timestamp' to float
if 'timestamp' in df.columns:
df.loc[:, df.columns != 'timestamp'] = df.loc[:, df.columns != 'timestamp'].apply(pd.to_numeric, errors='coerce')
else:
df = df.apply(pd.to_numeric, errors='coerce')
df = df.drop(columns=['Timestamp','ts'])
df.reset_index(inplace=True)
# Define the column mapping
column_mapping = {
'CLD_TTL_JUICE_FLOW': 'total_juice_flow',
'CLD_SK1_FM1_FLOW': 'SK1_juice_flow',
'CLD_SK2_FM1_FLOW': 'SK2_juice_flow',
'CLD_SK3_FM1_FLOW': 'SK3_juice_flow',
'CLD_SK4_FM1_FLOW': 'SK4_juice_flow',
'CLD_SK5_FM1_FLOW': 'SK5_juice_flow',
'CLD_FT_TPS': 'total_steam_flow',
'Timestamp': 'Timestamp'
}
# Rename the columns in the DataFrame
df.rename(columns=column_mapping, inplace=True)
#df
df['Steam_Economy'] = df.apply(
lambda row: row['total_juice_flow'] / row['total_steam_flow'] if row['total_steam_flow'] != 0 else None,
axis=1
)
columns_to_check = ['SK1_juice_flow', 'SK2_juice_flow', 'SK3_juice_flow',
'SK4_juice_flow', 'SK5_juice_flow', 'total_juice_flow',
'total_steam_flow', 'Steam_Economy']
df = df[(df[columns_to_check] >= 0).all(axis=1)]
import numpy as np
# Define columns for outlier detection
columns_to_check = ['SK1_juice_flow', 'SK2_juice_flow', 'SK3_juice_flow',
'SK4_juice_flow', 'SK5_juice_flow', 'total_juice_flow',
'total_steam_flow', 'Steam_Economy']
# Function to remove outliers using IQR
def remove_outliers_iqr(df, columns):
for col in columns:
Q1 = df[col].quantile(0.25) # First quartile (25th percentile)
Q3 = df[col].quantile(0.75) # Third quartile (75th percentile)
IQR = Q3 - Q1 # Interquartile range
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Remove rows where the column value is outside the IQR range
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
return df
# Remove negative values first
df = df[(df[columns_to_check] >= 0).all(axis=1)]
# Apply IQR outlier removal
df = remove_outliers_iqr(df, columns_to_check)
#allocation of steam
# Define operating steam ranges
steam_limits = {
"SK1_steam_flow": (110, 140),
"SK2_steam_flow": (90, 110),
"SK3_steam_flow": (90, 110),
"SK4_steam_flow": (80, 100),
"SK5_steam_flow": (110, 140),
}
# Function to distribute steam dynamically
def distribute_steam(df):
df = df.copy() # Work on a copy to avoid modifying original dataframe
# Create new columns for steam flows
for sk in ["SK1_steam_flow", "SK2_steam_flow", "SK3_steam_flow", "SK4_steam_flow", "SK5_steam_flow"]:
df[sk] = 0.0
for i, row in df.iterrows():
total_steam = row["total_steam_flow"]
# Get juice flow values
juice_flows = {
"SK1_juice_flow": row["SK1_juice_flow"],
"SK2_juice_flow": row["SK2_juice_flow"],
"SK3_juice_flow": row["SK3_juice_flow"],
"SK4_juice_flow": row["SK4_juice_flow"],
"SK5_juice_flow": row["SK5_juice_flow"],
}
# Identify operational SKs (juice flow > 20)
operational_sks = [sk for sk, val in juice_flows.items() if val > 20]
# Ensure exactly 3 SKs are operational
if len(operational_sks) > 3:
operational_sks = operational_sks[:3]
elif len(operational_sks) < 3:
continue # Skip row if less than 3 SKs are operational
# Decide which of SK1 or SK5 should run
if "SK1_juice_flow" in operational_sks and "SK5_juice_flow" in operational_sks:
if row["SK1_juice_flow"] > row["SK5_juice_flow"]:
operational_sks.remove("SK5_juice_flow")
else:
operational_sks.remove("SK1_juice_flow")
# Allocate steam based on distribution percentages
steam_distribution = {}
if "SK1_juice_flow" in operational_sks:
steam_distribution["SK1_steam_flow"] = 0.5 * total_steam
elif "SK5_juice_flow" in operational_sks:
steam_distribution["SK5_steam_flow"] = 0.5 * total_steam
if "SK4_juice_flow" in operational_sks:
steam_distribution["SK4_steam_flow"] = 0.2 * total_steam
remaining_steam = total_steam - sum(steam_distribution.values())
sk2_sk3_count = sum(1 for sk in ["SK2_juice_flow", "SK3_juice_flow"] if sk in operational_sks)
if sk2_sk3_count > 0:
per_sk_steam = remaining_steam / sk2_sk3_count
if "SK2_juice_flow" in operational_sks:
steam_distribution["SK2_steam_flow"] = per_sk_steam
if "SK3_juice_flow" in operational_sks:
steam_distribution["SK3_steam_flow"] = per_sk_steam
# Adjust for steam limits dynamically
total_allocated = sum(steam_distribution.values())
if total_allocated > total_steam:
factor = total_steam / total_allocated
steam_distribution = {k: v * factor for k, v in steam_distribution.items()}
# Ensure individual steam values lie within their respective limits
for sk, steam_value in steam_distribution.items():
min_val, max_val = steam_limits[sk]
if steam_value < min_val:
steam_distribution[sk] = min_val
elif steam_value > max_val:
steam_distribution[sk] = max_val
# Normalize again to ensure sum equals total_steam_flow
total_allocated = sum(steam_distribution.values())
if total_allocated > 0:
factor = total_steam / total_allocated
steam_distribution = {k: v * factor for k, v in steam_distribution.items()}
# Assign values to DataFrame
for sk, val in steam_distribution.items():
df.at[i, sk] = float(val)
return df
# Apply the function
df = distribute_steam(df)
# Set random seed for reproducibility
random.seed(42) # Choose a seed value
np.random.seed(42) # Ensure numpy randomness is also controlled
class QLearningOptimizer:
def __init__(self, alpha=0.1, gamma=0.9, epsilon=0.2):
self.alpha = alpha # Learning rate
self.gamma = gamma # Discount factor
self.epsilon = epsilon # Exploration rate
self.q_table = {} # Q-table as a dictionary
def get_q_values(self, state):
"""Retrieve Q-values for a given state, initialize if unseen"""
return self.q_table.setdefault(state, np.zeros(3)) # 3 actions (decrease, maintain, increase)
def choose_action(self, state):
"""Epsilon-greedy action selection"""
if random.uniform(0, 1) < self.epsilon:
return random.choice([-1]) # Only explore: decrease steam flow
else:
return np.argmax(self.get_q_values(state)) - 1 # Exploit: best learned action (decrease)
def update_q_table(self, state, action, reward, next_state):
"""Update Q-values using Bellman equation"""
q_values = self.get_q_values(state)
next_q_values = self.get_q_values(next_state)
best_next_q = np.max(next_q_values)
q_values[action + 1] = q_values[action + 1] + self.alpha * (reward + self.gamma * best_next_q - q_values[action + 1])
self.q_table[state] = q_values # Store updated Q-values
def save_model(self, filename="q_table.pkl"):
with open(filename, "wb") as f:
pickle.dump(self.q_table, f)
def load_model(self, filename="q_table.pkl"):
with open(filename, "rb") as f:
self.q_table = pickle.load(f)
def calculate_reward(steam_economy):
"""Reward function based on Steam Economy closeness to 2.75"""
return -abs(steam_economy - 2.75) # Negative deviation penalty
def optimize_steam_flow(df):
"""Optimize steam flow using Q-learning"""
ql = QLearningOptimizer()
latest_data = df.iloc[-1] # Get the latest timestamp data
# Identify operational SKs (Steam flow > 0)
operational_sks = [sk for sk in ['SK1_steam_flow', 'SK2_steam_flow', 'SK3_steam_flow', 'SK4_steam_flow', 'SK5_steam_flow']
if latest_data[sk] > 0]
if len(operational_sks) != 3:
print("Warning: Data should have exactly 3 operational SKs.")
return None
total_steam_flow = latest_data['total_steam_flow']
steam_economy = latest_data['Steam_Economy']
# Normalize the state
state = tuple([latest_data[sk] for sk in operational_sks] + [total_steam_flow])
# Choose actions for each operational SK (Only Decrease Allowed)
recommendations = {}
for sk in operational_sks:
action = -1 # Force reduction
reduction = random.randint(10, 15) # Ensure reduction is between 10 and 15
recommended_value = max(0, latest_data[sk] - reduction) # Prevent negative values
recommendations[sk] = recommended_value
# Ensure total recommended steam flow is reduced
total_reduction = random.randint(10, 15)
recommended_total_steam_flow = max(0, total_steam_flow - total_reduction)
# Adjust individual SK flows proportionally if needed
total_recommended_sk_flow = sum(recommendations.values())
difference = recommended_total_steam_flow - total_recommended_sk_flow
if abs(difference) > 0: # If there's a mismatch, adjust proportionally
sk_adjustments = {sk: recommendations[sk] + (difference * (recommendations[sk] / total_recommended_sk_flow))
for sk in operational_sks}
recommendations = {sk: max(0, round(val)) for sk, val in sk_adjustments.items()} # Ensure no negatives
# Ensure total recommended steam flow is strictly less than current
assert sum(recommendations.values()) < total_steam_flow, "Error: Steam consumption should be reduced!"
# New state after taking actions
new_state = tuple(list(recommendations.values()) + [recommended_total_steam_flow])
reward = calculate_reward(steam_economy)
# Update Q-table for each SK independently
for sk in operational_sks:
ql.update_q_table(state, action, reward, new_state)
# Save the updated model
ql.save_model()
# Return current and recommended steam flow values
return {
"current": {sk: latest_data[sk] for sk in operational_sks},
"recommended": recommendations,
"current_total_steam_flow": total_steam_flow,
"recommended_total_steam_flow": sum(recommendations.values()) # Ensure it matches
}
# Call function with your dataframe 'df'
result = optimize_steam_flow(df)
# Display result
# if result:
# print("Current Steam Flow:", result["current"])
# print("Recommended Steam Flow:", result["recommended"])
# print("Current Total Steam Flow:", result["current_total_steam_flow"])
# print("Recommended Total Steam Flow:", result["recommended_total_steam_flow"])
# Use the 'optimize_steam_flow' function and other helper functions from the previous section
def create_gradio_interface(df):
def display_results():
result = optimize_steam_flow(df) # Call the Q-learning optimization
if result:
# Prepare bar chart data for recommended steam flows
recommended_steam_flows = list(result["recommended"].values())
sks = list(result["recommended"].keys())
# Plotly Bar Chart for Recommended Steam Flow per SK
bar_chart = go.Figure(data=[
go.Bar(
x=sks,
y=recommended_steam_flows,
marker_color='skyblue',
text=[f"{val:.2f} TPH" for val in recommended_steam_flows],
textposition='auto'
)
])
bar_chart.update_layout(
title='Recommended Steam Flow per SK (TPH)',
xaxis_title='SK',
yaxis_title='Steam Flow (TPH)',
template='plotly_dark',
plot_bgcolor='#121212',
paper_bgcolor='#121212',
font=dict(color='white'),
margin=dict(l=50, r=50, t=50, b=50)
)
# Prepare Comparison Chart (Current vs. Recommended Total Steam Flow)
total_steam_flow = result["current_total_steam_flow"]
recommended_total_steam_flow = result["recommended_total_steam_flow"]
# Plotly Comparison Bar Chart for Total Steam Flow
comparison_chart = go.Figure(data=[
go.Bar(
x=['Current', 'Recommended'],
y=[total_steam_flow, recommended_total_steam_flow],
marker_color=['orange', 'lightgreen'],
text=[f"{total_steam_flow:.2f} TPH", f"{recommended_total_steam_flow:.2f} TPH"],
textposition='auto'
)
])
comparison_chart.update_layout(
title='Total Steam Flow Comparison (TPH)',
xaxis_title='Steam Flow Type',
yaxis_title='Steam Flow (TPH)',
template='plotly_dark',
plot_bgcolor='#121212',
paper_bgcolor='#121212',
font=dict(color='white'),
margin=dict(l=50, r=50, t=50, b=50)
)
# Stylish Steam Flow Summary
summary = {
"Current Total Steam Flow (TPH)": f"{total_steam_flow:.2f}",
"Recommended Total Steam Flow (TPH)": f"{recommended_total_steam_flow:.2f}",
"Recommended Steam Flows for SKs (TPH)": {k: f"{v:.2f}" for k, v in result["recommended"].items()}
}
# Custom HTML to style the summary in a visually appealing way with white text
summary_html = f"""
<div style="font-size: 18px; color: white; background-color: #333; padding: 20px; border-radius: 10px;">
<h3 style="color: #ffcc00;">Steam Flow Summary</h3>
<p><strong style="color: white;">Current Total Steam Flow (TPH):</strong> <span style="color: #ffcc00;">{summary["Current Total Steam Flow (TPH)"]} TPH</span></p>
<p><strong style="color: white;">Recommended Total Steam Flow (TPH):</strong> <span style="color: #ffcc00;">{summary["Recommended Total Steam Flow (TPH)"]} TPH</span></p>
<p><strong style="color: white;">Recommended Steam Flows for SKs (TPH):</strong></p>
<ul style="padding-left: 20px;">
{"".join([f"<li style='color: white;'>{sk}: <span style='color: #ffcc00;'>{val} TPH</span></li>" for sk, val in summary["Recommended Steam Flows for SKs (TPH)"].items()])}
</ul>
</div>
"""
return bar_chart, comparison_chart, summary_html
# Create Gradio interface
with gr.Blocks() as demo:
# Title with custom styling
gr.Markdown(
"<h1 style='color: #ffcc00; font-weight: bold; text-align: left;'>Steam Flow Optimization Dashboard</h1>",
elem_id="title"
)
# Create charts row
with gr.Row():
bar_chart_output = gr.Plot(label="Recommended Steam Flow per SK")
comparison_chart_output = gr.Plot(label="Total Steam Flow Comparison")
# Steam flow summary section placed after the graphs
with gr.Row():
with gr.Column():
steam_flow_summary = gr.HTML(label="**Steam Flow Summary**")
# Optimize button at the bottom with enhanced styling
optimize_button = gr.Button("Optimize Steam Flow", elem_id="optimize_button", size="lg", variant="primary")
# Connect button to function
optimize_button.click(display_results, outputs=[bar_chart_output, comparison_chart_output, steam_flow_summary])
# CSS for custom styling
demo.css = """
#title {
font-size: 30px;
color: #ffcc00;
font-weight: bold;
text-align: left;
padding-left: 20px;
}
#optimize_button {
margin-top: 30px;
background-color: #4CAF50;
color: white;
border-radius: 10px;
padding: 15px;
width: 200px;
font-size: 18px;
}
.gradio-container {
background-color: #1e1e1e;
color: white;
border-radius: 15px;
padding: 30px;
margin: 50px;
}
.gradio-json {
background-color: #333;
color: white;
border-radius: 10px;
padding: 20px;
}
.gradio-html {
font-size: 16px;
color: white;
background-color: #333;
padding: 20px;
border-radius: 10px;
}
"""
return demo
# Create and launch the Gradio app
gradio_app = create_gradio_interface(df)
gradio_app.launch(share=True)
|