File size: 18,152 Bytes
bee75b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d59fd
b1f6d9e
 
 
bee75b4
 
 
b1f6d9e
 
 
 
bee75b4
 
 
b1f6d9e
bee75b4
 
 
 
b1f6d9e
bee75b4
b1f6d9e
bee75b4
 
 
 
 
 
b1f6d9e
 
bee75b4
 
 
 
 
 
 
 
 
b1f6d9e
 
 
bee75b4
 
b1f6d9e
bee75b4
b1f6d9e
bee75b4
b1f6d9e
bee75b4
 
 
 
 
 
 
 
 
 
b1f6d9e
bee75b4
 
b1f6d9e
bee75b4
 
b1f6d9e
 
 
 
 
bee75b4
 
b1f6d9e
 
 
bee75b4
b1f6d9e
 
 
bee75b4
b1f6d9e
 
 
 
bee75b4
b1f6d9e
 
bee75b4
 
 
b1f6d9e
bee75b4
 
 
 
 
b1f6d9e
bee75b4
 
b1f6d9e
bee75b4
 
 
 
b1f6d9e
bee75b4
 
 
 
 
b1f6d9e
bee75b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d17179
bee75b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f6d9e
bee75b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
import pandas as pd
from datetime import datetime
#from openpyxl import load_workbook
from IPython.display import FileLink, display
from Eversense4_API_2 import Eversense4_API
import numpy as np
import random
from sklearn.preprocessing import MinMaxScaler
import pickle
import gradio as gr
import plotly.graph_objects as go


# Load credentials from environment variables
USERNAME = os.getenv("EVERSENSE_USERNAME", "pgautam@forbesmarshall.com")
PASSWORD = os.getenv("EVERSENSE_PASSWORD", "pranjal123@")

# Initialize API object
apiObj = Eversense4_API(host="https://eversense.forbesmarshall.com")

# Log in securely
apiObj.login(USERNAME, PASSWORD)

# Define start and end timestamps
start = datetime(2024, 12, 1)  # Fixed start date
end = datetime.now()  # Current time

startTS = int(start.timestamp() * 1000)  # Convert to milliseconds
endTS = int(end.timestamp() * 1000)

#print("Start Timestamp:", startTS)
#print("End Timestamp:", endTS)

# Fetch telemetry data
keys = [
    'CLD_TTL_JUICE_FLOW', 'CLD_SK1_FM1_FLOW', 'CLD_SK2_FM1_FLOW',
    'CLD_SK3_FM1_FLOW', 'CLD_SK4_FM1_FLOW', 'CLD_SK5_FM1_FLOW', 'CLD_FT_TPS'
]
telemetry_response = apiObj.getDeviceDataValues(
    '51f7d6d0-9dd0-11ef-9e72-3915b0e66e63',
    keys=keys,
    startTS=startTS,
    endTS=endTS,
    interval=60000,
    limit=500000
)

# Process data
df = apiObj.processData(telemetry_response)

# Convert all columns except 'timestamp' to float
if 'timestamp' in df.columns:
    df.loc[:, df.columns != 'timestamp'] = df.loc[:, df.columns != 'timestamp'].apply(pd.to_numeric, errors='coerce')
else:
    df = df.apply(pd.to_numeric, errors='coerce')

df = df.drop(columns=['Timestamp','ts'])

df.reset_index(inplace=True)

# Define the column mapping
column_mapping = {
    'CLD_TTL_JUICE_FLOW': 'total_juice_flow',
    'CLD_SK1_FM1_FLOW': 'SK1_juice_flow',
    'CLD_SK2_FM1_FLOW': 'SK2_juice_flow',
    'CLD_SK3_FM1_FLOW': 'SK3_juice_flow',
    'CLD_SK4_FM1_FLOW': 'SK4_juice_flow',
    'CLD_SK5_FM1_FLOW': 'SK5_juice_flow',
    'CLD_FT_TPS': 'total_steam_flow',
    'Timestamp': 'Timestamp'
}

# Rename the columns in the DataFrame
df.rename(columns=column_mapping, inplace=True)
#df
df['Steam_Economy'] = df.apply(
    lambda row: row['total_juice_flow'] / row['total_steam_flow'] if row['total_steam_flow'] != 0 else None,
    axis=1
)
columns_to_check = ['SK1_juice_flow', 'SK2_juice_flow', 'SK3_juice_flow',
                    'SK4_juice_flow', 'SK5_juice_flow', 'total_juice_flow',
                    'total_steam_flow', 'Steam_Economy']

df = df[(df[columns_to_check] >= 0).all(axis=1)]
import numpy as np

# Define columns for outlier detection
columns_to_check = ['SK1_juice_flow', 'SK2_juice_flow', 'SK3_juice_flow',
                    'SK4_juice_flow', 'SK5_juice_flow', 'total_juice_flow',
                    'total_steam_flow', 'Steam_Economy']

# Function to remove outliers using IQR
def remove_outliers_iqr(df, columns):
    for col in columns:
        Q1 = df[col].quantile(0.25)  # First quartile (25th percentile)
        Q3 = df[col].quantile(0.75)  # Third quartile (75th percentile)
        IQR = Q3 - Q1  # Interquartile range
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR

        # Remove rows where the column value is outside the IQR range
        df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

    return df

# Remove negative values first
df = df[(df[columns_to_check] >= 0).all(axis=1)]

# Apply IQR outlier removal
df = remove_outliers_iqr(df, columns_to_check)


#allocation of steam

# Define operating steam ranges
steam_limits = {
    "SK1_steam_flow": (110, 140),
    "SK2_steam_flow": (90, 110),
    "SK3_steam_flow": (90, 110),
    "SK4_steam_flow": (80, 100),
    "SK5_steam_flow": (110, 140),
}

# Function to distribute steam dynamically
def distribute_steam(df):
    df = df.copy()  # Work on a copy to avoid modifying original dataframe

    # Create new columns for steam flows
    for sk in ["SK1_steam_flow", "SK2_steam_flow", "SK3_steam_flow", "SK4_steam_flow", "SK5_steam_flow"]:
        df[sk] = 0.0

    for i, row in df.iterrows():
        total_steam = row["total_steam_flow"]

        # Get juice flow values
        juice_flows = {
            "SK1_juice_flow": row["SK1_juice_flow"],
            "SK2_juice_flow": row["SK2_juice_flow"],
            "SK3_juice_flow": row["SK3_juice_flow"],
            "SK4_juice_flow": row["SK4_juice_flow"],
            "SK5_juice_flow": row["SK5_juice_flow"],
        }

        # Identify operational SKs (juice flow > 20)
        operational_sks = [sk for sk, val in juice_flows.items() if val > 20]

        # Ensure exactly 3 SKs are operational
        if len(operational_sks) > 3:
            operational_sks = operational_sks[:3]
        elif len(operational_sks) < 3:
            continue  # Skip row if less than 3 SKs are operational

        # Decide which of SK1 or SK5 should run
        if "SK1_juice_flow" in operational_sks and "SK5_juice_flow" in operational_sks:
            if row["SK1_juice_flow"] > row["SK5_juice_flow"]:
                operational_sks.remove("SK5_juice_flow")
            else:
                operational_sks.remove("SK1_juice_flow")

        # Allocate steam based on distribution percentages
        steam_distribution = {}
        if "SK1_juice_flow" in operational_sks:
            steam_distribution["SK1_steam_flow"] = 0.5 * total_steam
        elif "SK5_juice_flow" in operational_sks:
            steam_distribution["SK5_steam_flow"] = 0.5 * total_steam

        if "SK4_juice_flow" in operational_sks:
            steam_distribution["SK4_steam_flow"] = 0.2 * total_steam

        remaining_steam = total_steam - sum(steam_distribution.values())
        sk2_sk3_count = sum(1 for sk in ["SK2_juice_flow", "SK3_juice_flow"] if sk in operational_sks)

        if sk2_sk3_count > 0:
            per_sk_steam = remaining_steam / sk2_sk3_count
            if "SK2_juice_flow" in operational_sks:
                steam_distribution["SK2_steam_flow"] = per_sk_steam
            if "SK3_juice_flow" in operational_sks:
                steam_distribution["SK3_steam_flow"] = per_sk_steam

        # Adjust for steam limits dynamically
        total_allocated = sum(steam_distribution.values())
        if total_allocated > total_steam:
            factor = total_steam / total_allocated
            steam_distribution = {k: v * factor for k, v in steam_distribution.items()}

        # Ensure individual steam values lie within their respective limits
        for sk, steam_value in steam_distribution.items():
            min_val, max_val = steam_limits[sk]
            if steam_value < min_val:
                steam_distribution[sk] = min_val
            elif steam_value > max_val:
                steam_distribution[sk] = max_val

        # Normalize again to ensure sum equals total_steam_flow
        total_allocated = sum(steam_distribution.values())
        if total_allocated > 0:
            factor = total_steam / total_allocated
            steam_distribution = {k: v * factor for k, v in steam_distribution.items()}

        # Assign values to DataFrame
        for sk, val in steam_distribution.items():
            df.at[i, sk] = float(val)

    return df

# Apply the function
df = distribute_steam(df)



# Set random seed for reproducibility
random.seed(42)  # Choose a seed value
np.random.seed(42)  # Ensure numpy randomness is also controlled


class QLearningOptimizer:
    def __init__(self, alpha=0.1, gamma=0.9, epsilon=0.2):
        self.alpha = alpha  # Learning rate
        self.gamma = gamma  # Discount factor
        self.epsilon = epsilon  # Exploration rate
        self.q_table = {}  # Q-table as a dictionary

    def get_q_values(self, state):
        """Retrieve Q-values for a given state, initialize if unseen"""
        return self.q_table.setdefault(state, np.zeros(3))  # 3 actions (decrease, maintain, increase)

    def choose_action(self, state):
        """Epsilon-greedy action selection"""
        if random.uniform(0, 1) < self.epsilon:
            return random.choice([-1])  # Only explore: decrease steam flow
        else:
            return np.argmax(self.get_q_values(state)) - 1  # Exploit: best learned action (decrease)

    def update_q_table(self, state, action, reward, next_state):
        """Update Q-values using Bellman equation"""
        q_values = self.get_q_values(state)
        next_q_values = self.get_q_values(next_state)
        best_next_q = np.max(next_q_values)
        q_values[action + 1] = q_values[action + 1] + self.alpha * (reward + self.gamma * best_next_q - q_values[action + 1])
        self.q_table[state] = q_values  # Store updated Q-values

    def save_model(self, filename="q_table.pkl"):
        with open(filename, "wb") as f:
            pickle.dump(self.q_table, f)

    def load_model(self, filename="q_table.pkl"):
        with open(filename, "rb") as f:
            self.q_table = pickle.load(f)

def calculate_reward(steam_economy):
    """Reward function based on Steam Economy closeness to 2.75"""
    return -abs(steam_economy - 2.75)  # Negative deviation penalty

def optimize_steam_flow(df):
    """Optimize steam flow using Q-learning"""
    ql = QLearningOptimizer()
    latest_data = df.iloc[-1]  # Get the latest timestamp data

    # Identify operational SKs (Steam flow > 0)
    operational_sks = [sk for sk in ['SK1_steam_flow', 'SK2_steam_flow', 'SK3_steam_flow', 'SK4_steam_flow', 'SK5_steam_flow']
                       if latest_data[sk] > 0]

    if len(operational_sks) != 3:
        print("Warning: Data should have exactly 3 operational SKs.")
        return None

    total_steam_flow = latest_data['total_steam_flow']
    steam_economy = latest_data['Steam_Economy']

    # Normalize the state
    state = tuple([latest_data[sk] for sk in operational_sks] + [total_steam_flow])

    # Choose actions for each operational SK (Only Decrease Allowed)
    recommendations = {}
    for sk in operational_sks:
        action = -1  # Force reduction

        reduction = random.randint(10, 15)  # Ensure reduction is between 10 and 15
        recommended_value = max(0, latest_data[sk] - reduction)  # Prevent negative values

        recommendations[sk] = recommended_value

    # Ensure total recommended steam flow is reduced
    total_reduction = random.randint(10, 15)
    recommended_total_steam_flow = max(0, total_steam_flow - total_reduction)

    # Adjust individual SK flows proportionally if needed
    total_recommended_sk_flow = sum(recommendations.values())
    difference = recommended_total_steam_flow - total_recommended_sk_flow

    if abs(difference) > 0:  # If there's a mismatch, adjust proportionally
        sk_adjustments = {sk: recommendations[sk] + (difference * (recommendations[sk] / total_recommended_sk_flow))
                          for sk in operational_sks}
        recommendations = {sk: max(0, round(val)) for sk, val in sk_adjustments.items()}  # Ensure no negatives

    # Ensure total recommended steam flow is strictly less than current
    assert sum(recommendations.values()) < total_steam_flow, "Error: Steam consumption should be reduced!"

    # New state after taking actions
    new_state = tuple(list(recommendations.values()) + [recommended_total_steam_flow])
    reward = calculate_reward(steam_economy)

    # Update Q-table for each SK independently
    for sk in operational_sks:
        ql.update_q_table(state, action, reward, new_state)

    # Save the updated model
    ql.save_model()

    # Return current and recommended steam flow values
    return {
        "current": {sk: latest_data[sk] for sk in operational_sks},
        "recommended": recommendations,
        "current_total_steam_flow": total_steam_flow,
        "recommended_total_steam_flow": sum(recommendations.values())  # Ensure it matches
    }

# Call function with your dataframe 'df'
result = optimize_steam_flow(df)

# Display result
# if result:
#     print("Current Steam Flow:", result["current"])
#     print("Recommended Steam Flow:", result["recommended"])
#     print("Current Total Steam Flow:", result["current_total_steam_flow"])
#     print("Recommended Total Steam Flow:", result["recommended_total_steam_flow"])


# Use the 'optimize_steam_flow' function and other helper functions from the previous section

def create_gradio_interface(df):
    def display_results():
        result = optimize_steam_flow(df)  # Call the Q-learning optimization

        if result:
            # Prepare bar chart data for recommended steam flows
            recommended_steam_flows = list(result["recommended"].values())
            sks = list(result["recommended"].keys())

            # Plotly Bar Chart for Recommended Steam Flow per SK
            bar_chart = go.Figure(data=[
                go.Bar(
                    x=sks,
                    y=recommended_steam_flows,
                    marker_color='skyblue',
                    text=[f"{val:.2f} TPH" for val in recommended_steam_flows],
                    textposition='auto'
                )
            ])
            bar_chart.update_layout(
                title='Recommended Steam Flow per SK (TPH)',
                xaxis_title='SK',
                yaxis_title='Steam Flow (TPH)',
                template='plotly_dark',
                plot_bgcolor='#121212',
                paper_bgcolor='#121212',
                font=dict(color='white'),
                margin=dict(l=50, r=50, t=50, b=50)
            )

            # Prepare Comparison Chart (Current vs. Recommended Total Steam Flow)
            total_steam_flow = result["current_total_steam_flow"]
            recommended_total_steam_flow = result["recommended_total_steam_flow"]

            # Plotly Comparison Bar Chart for Total Steam Flow
            comparison_chart = go.Figure(data=[
                go.Bar(
                    x=['Current', 'Recommended'],
                    y=[total_steam_flow, recommended_total_steam_flow],
                    marker_color=['orange', 'lightgreen'],
                    text=[f"{total_steam_flow:.2f} TPH", f"{recommended_total_steam_flow:.2f} TPH"],
                    textposition='auto'
                )
            ])
            comparison_chart.update_layout(
                title='Total Steam Flow Comparison (TPH)',
                xaxis_title='Steam Flow Type',
                yaxis_title='Steam Flow (TPH)',
                template='plotly_dark',
                plot_bgcolor='#121212',
                paper_bgcolor='#121212',
                font=dict(color='white'),
                margin=dict(l=50, r=50, t=50, b=50)
            )

            # Stylish Steam Flow Summary
            summary = {
                "Current Total Steam Flow (TPH)": f"{total_steam_flow:.2f}",
                "Recommended Total Steam Flow (TPH)": f"{recommended_total_steam_flow:.2f}",
                "Recommended Steam Flows for SKs (TPH)": {k: f"{v:.2f}" for k, v in result["recommended"].items()}
            }

            # Custom HTML to style the summary in a visually appealing way with white text
            summary_html = f"""
            <div style="font-size: 18px; color: white; background-color: #333; padding: 20px; border-radius: 10px;">
                <h3 style="color: #ffcc00;">Steam Flow Summary</h3>
                <p><strong style="color: white;">Current Total Steam Flow (TPH):</strong> <span style="color: #ffcc00;">{summary["Current Total Steam Flow (TPH)"]} TPH</span></p>
                <p><strong style="color: white;">Recommended Total Steam Flow (TPH):</strong> <span style="color: #ffcc00;">{summary["Recommended Total Steam Flow (TPH)"]} TPH</span></p>
                <p><strong style="color: white;">Recommended Steam Flows for SKs (TPH):</strong></p>
                <ul style="padding-left: 20px;">
                    {"".join([f"<li style='color: white;'>{sk}: <span style='color: #ffcc00;'>{val} TPH</span></li>" for sk, val in summary["Recommended Steam Flows for SKs (TPH)"].items()])}
                </ul>
            </div>
            """

            return bar_chart, comparison_chart, summary_html

    # Create Gradio interface
    with gr.Blocks() as demo:
        # Title with custom styling
        gr.Markdown(
            "<h1 style='color: #ffcc00; font-weight: bold; text-align: left;'>Steam Flow Optimization Dashboard</h1>",
            elem_id="title"
        )

        # Create charts row
        with gr.Row():
            bar_chart_output = gr.Plot(label="Recommended Steam Flow per SK")
            comparison_chart_output = gr.Plot(label="Total Steam Flow Comparison")

        # Steam flow summary section placed after the graphs
        with gr.Row():
            with gr.Column():
                steam_flow_summary = gr.HTML(label="**Steam Flow Summary**")

        # Optimize button at the bottom with enhanced styling
        optimize_button = gr.Button("Optimize Steam Flow", elem_id="optimize_button", size="lg", variant="primary")

        # Connect button to function
        optimize_button.click(display_results, outputs=[bar_chart_output, comparison_chart_output, steam_flow_summary])

    # CSS for custom styling
    demo.css = """
    #title {
        font-size: 30px;
        color: #ffcc00;
        font-weight: bold;
        text-align: left;
        padding-left: 20px;
    }
    #optimize_button {
        margin-top: 30px;
        background-color: #4CAF50;
        color: white;
        border-radius: 10px;
        padding: 15px;
        width: 200px;
        font-size: 18px;
    }
    .gradio-container {
        background-color: #1e1e1e;
        color: white;
        border-radius: 15px;
        padding: 30px;
        margin: 50px;
    }
    .gradio-json {
        background-color: #333;
        color: white;
        border-radius: 10px;
        padding: 20px;
    }
    .gradio-html {
        font-size: 16px;
        color: white;
        background-color: #333;
        padding: 20px;
        border-radius: 10px;
    }
    """

    return demo


# Create and launch the Gradio app
gradio_app = create_gradio_interface(df)
gradio_app.launch(share=True)