Spaces:
Sleeping
Sleeping
更新專案
Browse files
app.py
CHANGED
|
@@ -1,33 +1,39 @@
|
|
| 1 |
# app.py
|
| 2 |
# -------------------------------
|
| 3 |
-
#
|
| 4 |
# -------------------------------
|
| 5 |
import os, glob, requests
|
| 6 |
from langchain.docstore.document import Document
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
from langchain.vectorstores import FAISS
|
| 9 |
from langchain.chains import RetrievalQA
|
| 10 |
-
from
|
|
|
|
| 11 |
from docx import Document as DocxDocument
|
| 12 |
import gradio as gr
|
| 13 |
|
| 14 |
# -------------------------------
|
| 15 |
-
#
|
| 16 |
# -------------------------------
|
| 17 |
TXT_FOLDER = "./out_texts"
|
| 18 |
DB_PATH = "./faiss_db"
|
| 19 |
os.makedirs(DB_PATH, exist_ok=True)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# -------------------------------
|
| 22 |
-
#
|
| 23 |
# -------------------------------
|
| 24 |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 25 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 26 |
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
| 27 |
|
| 28 |
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
|
|
|
|
| 29 |
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
|
| 30 |
else:
|
|
|
|
| 31 |
txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
|
| 32 |
docs = []
|
| 33 |
for filepath in txt_files:
|
|
@@ -38,17 +44,15 @@ else:
|
|
| 38 |
db = FAISS.from_documents(split_docs, embeddings_model)
|
| 39 |
db.save_local(DB_PATH)
|
| 40 |
|
| 41 |
-
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k":5})
|
| 42 |
|
| 43 |
# -------------------------------
|
| 44 |
-
# Hugging Face Hub
|
| 45 |
# -------------------------------
|
| 46 |
-
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 47 |
-
|
| 48 |
llm = HuggingFaceHub(
|
| 49 |
repo_id="google/flan-t5-large",
|
| 50 |
-
model_kwargs={"temperature":0.7, "max_new_tokens":512},
|
| 51 |
-
huggingfacehub_api_token=
|
| 52 |
)
|
| 53 |
|
| 54 |
qa_chain = RetrievalQA.from_chain_type(
|
|
@@ -58,15 +62,14 @@ qa_chain = RetrievalQA.from_chain_type(
|
|
| 58 |
)
|
| 59 |
|
| 60 |
# -------------------------------
|
| 61 |
-
#
|
| 62 |
# -------------------------------
|
| 63 |
def get_hf_rate_limit():
|
| 64 |
-
headers = {"Authorization": f"Bearer {
|
| 65 |
try:
|
| 66 |
r = requests.get("https://huggingface.co/api/whoami", headers=headers)
|
| 67 |
r.raise_for_status()
|
| 68 |
data = r.json()
|
| 69 |
-
# free plan 每小時 300 次
|
| 70 |
used = data.get("rate_limit", {}).get("used", 0)
|
| 71 |
remaining = 300 - used if used is not None else "未知"
|
| 72 |
return f"本小時剩餘 API 次數:約 {remaining}"
|
|
@@ -74,16 +77,16 @@ def get_hf_rate_limit():
|
|
| 74 |
return "無法取得 API 速率資訊"
|
| 75 |
|
| 76 |
# -------------------------------
|
| 77 |
-
#
|
| 78 |
# -------------------------------
|
| 79 |
def generate_article_with_rate(query, segments=5):
|
| 80 |
docx_file = "/tmp/generated_article.docx"
|
| 81 |
doc = DocxDocument()
|
| 82 |
doc.add_heading(query, level=1)
|
| 83 |
-
|
| 84 |
all_text = []
|
| 85 |
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
|
| 86 |
-
|
| 87 |
for i in range(int(segments)):
|
| 88 |
try:
|
| 89 |
result = qa_chain({"query": prompt})
|
|
@@ -95,17 +98,16 @@ def generate_article_with_rate(query, segments=5):
|
|
| 95 |
all_text.append(paragraph)
|
| 96 |
doc.add_paragraph(paragraph)
|
| 97 |
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
|
| 98 |
-
|
| 99 |
doc.save(docx_file)
|
| 100 |
full_text = "\n\n".join(all_text)
|
| 101 |
-
|
| 102 |
# 取得 API 剩餘次數
|
| 103 |
rate_info = get_hf_rate_limit()
|
| 104 |
-
|
| 105 |
return f"{rate_info}\n\n{full_text}", docx_file
|
| 106 |
|
| 107 |
# -------------------------------
|
| 108 |
-
# Gradio 介面
|
| 109 |
# -------------------------------
|
| 110 |
iface = gr.Interface(
|
| 111 |
fn=generate_article_with_rate,
|
|
@@ -121,4 +123,6 @@ iface = gr.Interface(
|
|
| 121 |
description="使用 Hugging Face Hub LLM + FAISS RAG,生成文章並提示 API 剩餘額度。"
|
| 122 |
)
|
| 123 |
|
| 124 |
-
|
|
|
|
|
|
|
|
|
| 1 |
# app.py
|
| 2 |
# -------------------------------
|
| 3 |
+
# 1. 套件載入
|
| 4 |
# -------------------------------
|
| 5 |
import os, glob, requests
|
| 6 |
from langchain.docstore.document import Document
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
from langchain.vectorstores import FAISS
|
| 9 |
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain_huggingface import HuggingFaceHub # <-- 正確的 Import
|
| 11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 12 |
from docx import Document as DocxDocument
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
# -------------------------------
|
| 16 |
+
# 2. 環境變數與資料路徑
|
| 17 |
# -------------------------------
|
| 18 |
TXT_FOLDER = "./out_texts"
|
| 19 |
DB_PATH = "./faiss_db"
|
| 20 |
os.makedirs(DB_PATH, exist_ok=True)
|
| 21 |
|
| 22 |
+
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 23 |
+
if not HF_TOKEN:
|
| 24 |
+
raise ValueError("請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN")
|
| 25 |
+
|
| 26 |
# -------------------------------
|
| 27 |
+
# 3. 建立或載入向量資料庫
|
| 28 |
# -------------------------------
|
| 29 |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
| 30 |
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
| 31 |
|
| 32 |
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
|
| 33 |
+
print("載入現有向量資料庫...")
|
| 34 |
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
|
| 35 |
else:
|
| 36 |
+
print("沒有資料庫,開始建立新向量資料庫...")
|
| 37 |
txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
|
| 38 |
docs = []
|
| 39 |
for filepath in txt_files:
|
|
|
|
| 44 |
db = FAISS.from_documents(split_docs, embeddings_model)
|
| 45 |
db.save_local(DB_PATH)
|
| 46 |
|
| 47 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 48 |
|
| 49 |
# -------------------------------
|
| 50 |
+
# 4. LLM 設定(Hugging Face Hub)
|
| 51 |
# -------------------------------
|
|
|
|
|
|
|
| 52 |
llm = HuggingFaceHub(
|
| 53 |
repo_id="google/flan-t5-large",
|
| 54 |
+
model_kwargs={"temperature": 0.7, "max_new_tokens": 512},
|
| 55 |
+
huggingfacehub_api_token=HF_TOKEN
|
| 56 |
)
|
| 57 |
|
| 58 |
qa_chain = RetrievalQA.from_chain_type(
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
# -------------------------------
|
| 65 |
+
# 5. 查詢 API 剩餘額度
|
| 66 |
# -------------------------------
|
| 67 |
def get_hf_rate_limit():
|
| 68 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 69 |
try:
|
| 70 |
r = requests.get("https://huggingface.co/api/whoami", headers=headers)
|
| 71 |
r.raise_for_status()
|
| 72 |
data = r.json()
|
|
|
|
| 73 |
used = data.get("rate_limit", {}).get("used", 0)
|
| 74 |
remaining = 300 - used if used is not None else "未知"
|
| 75 |
return f"本小時剩餘 API 次數:約 {remaining}"
|
|
|
|
| 77 |
return "無法取得 API 速率資訊"
|
| 78 |
|
| 79 |
# -------------------------------
|
| 80 |
+
# 6. 生成文章
|
| 81 |
# -------------------------------
|
| 82 |
def generate_article_with_rate(query, segments=5):
|
| 83 |
docx_file = "/tmp/generated_article.docx"
|
| 84 |
doc = DocxDocument()
|
| 85 |
doc.add_heading(query, level=1)
|
| 86 |
+
|
| 87 |
all_text = []
|
| 88 |
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
|
| 89 |
+
|
| 90 |
for i in range(int(segments)):
|
| 91 |
try:
|
| 92 |
result = qa_chain({"query": prompt})
|
|
|
|
| 98 |
all_text.append(paragraph)
|
| 99 |
doc.add_paragraph(paragraph)
|
| 100 |
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
|
| 101 |
+
|
| 102 |
doc.save(docx_file)
|
| 103 |
full_text = "\n\n".join(all_text)
|
| 104 |
+
|
| 105 |
# 取得 API 剩餘次數
|
| 106 |
rate_info = get_hf_rate_limit()
|
|
|
|
| 107 |
return f"{rate_info}\n\n{full_text}", docx_file
|
| 108 |
|
| 109 |
# -------------------------------
|
| 110 |
+
# 7. Gradio 介面
|
| 111 |
# -------------------------------
|
| 112 |
iface = gr.Interface(
|
| 113 |
fn=generate_article_with_rate,
|
|
|
|
| 123 |
description="使用 Hugging Face Hub LLM + FAISS RAG,生成文章並提示 API 剩餘額度。"
|
| 124 |
)
|
| 125 |
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
iface.launch()
|
| 128 |
+
|