Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| # Load your model | |
| model_name = "CJHauser/PrisimAI-t5" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| def answer_question(context, question): | |
| input_text = f"question: {question} context: {context}" | |
| inputs = tokenizer.encode(input_text, return_tensors="pt", truncation=True) | |
| outputs = model.generate(inputs, max_length=128) | |
| answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return answer | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# π€ PrisimAI Q&A\nAsk questions based on a given context.") | |
| with gr.Row(): | |
| context = gr.Textbox(label="Context", placeholder="Paste your reference text here...", lines=8) | |
| question = gr.Textbox(label="Your Question", placeholder="What do you want to know?") | |
| answer = gr.Textbox(label="Answer", interactive=False) | |
| btn = gr.Button("Get Answer") | |
| btn.click(fn=answer_question, inputs=[context, question], outputs=answer) | |
| demo.launch() | |