Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
f4c47e0
1
Parent(s):
3c67a84
0516_fix_errors
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ import gradio as gr
|
|
| 10 |
import requests
|
| 11 |
import time
|
| 12 |
import random
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
import torch
|
| 15 |
import os
|
|
@@ -26,6 +27,7 @@ from models.celeb_embeddings import embedding_forward
|
|
| 26 |
import models.embedding_manager
|
| 27 |
import importlib
|
| 28 |
import time
|
|
|
|
| 29 |
import os
|
| 30 |
# os.environ['GRADIO_TEMP_DIR'] = 'qinghewang/tmp'
|
| 31 |
|
|
@@ -128,30 +130,13 @@ woman_Embedding_Manager = models.embedding_manager.EmbeddingManagerId_adain(
|
|
| 128 |
loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
|
| 129 |
vit_out_dim = input_dim,
|
| 130 |
)
|
|
|
|
| 131 |
text_encoder.text_model.embeddings.forward = original_forward
|
| 132 |
|
|
|
|
| 133 |
DEFAULT_STYLE_NAME = "Watercolor"
|
| 134 |
MAX_SEED = np.iinfo(np.int32).max
|
| 135 |
|
| 136 |
-
def remove_tips():
|
| 137 |
-
return gr.update(visible=False)
|
| 138 |
-
|
| 139 |
-
def response(choice, gender_GAN):
|
| 140 |
-
c = ""
|
| 141 |
-
e = ""
|
| 142 |
-
if choice == "Create a new character":
|
| 143 |
-
c = "create"
|
| 144 |
-
elif choice == "Still use this character":
|
| 145 |
-
c = "continue"
|
| 146 |
-
|
| 147 |
-
if gender_GAN == "Normal":
|
| 148 |
-
e = "normal_GAN"
|
| 149 |
-
elif gender_GAN == "Man":
|
| 150 |
-
e = "man_GAN"
|
| 151 |
-
elif gender_GAN == "Woman":
|
| 152 |
-
e = "woman_GAN"
|
| 153 |
-
|
| 154 |
-
return c, e
|
| 155 |
|
| 156 |
def replace_phrases(prompt):
|
| 157 |
replacements = {
|
|
@@ -174,47 +159,42 @@ def handle_prompts(prompts_array):
|
|
| 174 |
|
| 175 |
|
| 176 |
@spaces.GPU
|
| 177 |
-
def generate_image(
|
| 178 |
prompts = handle_prompts(prompts_array)
|
| 179 |
|
| 180 |
-
print("
|
| 181 |
|
| 182 |
-
if
|
| 183 |
steps = 10000
|
| 184 |
Embedding_Manager = normal_Embedding_Manager
|
| 185 |
-
elif
|
| 186 |
steps = 7000
|
| 187 |
Embedding_Manager = man_Embedding_Manager
|
| 188 |
-
elif
|
| 189 |
steps = 6000
|
| 190 |
Embedding_Manager = woman_Embedding_Manager
|
| 191 |
else:
|
| 192 |
print("Hello, please notice this ^_^")
|
| 193 |
assert 0
|
| 194 |
|
| 195 |
-
embedding_path = os.path.join("training_weight",
|
| 196 |
Embedding_Manager.load(embedding_path)
|
| 197 |
print("embedding_path:",embedding_path)
|
| 198 |
-
print("
|
| 199 |
|
| 200 |
-
index = "0"
|
| 201 |
-
save_dir = os.path.join("test_results/" +
|
| 202 |
os.makedirs(save_dir, exist_ok=True)
|
| 203 |
-
ran_emb_path = os.path.join(save_dir, "ran_embeddings.pt")
|
| 204 |
-
test_emb_path = os.path.join(save_dir, "id_embeddings.pt")
|
| 205 |
|
| 206 |
random_embedding = torch.randn(1, 1, input_dim).to(device)
|
| 207 |
-
if
|
| 208 |
-
print("new")
|
| 209 |
-
torch.save(random_embedding, ran_emb_path)
|
| 210 |
_, emb_dict = Embedding_Manager(tokenized_text=None, embedded_text=None, name_batch=None, random_embeddings = random_embedding, timesteps = None,)
|
| 211 |
-
# text_encoder.text_model.embeddings.forward = original_forward
|
| 212 |
test_emb = emb_dict["adained_total_embedding"].to(device)
|
| 213 |
-
|
| 214 |
-
elif label == "continue":
|
| 215 |
-
print("old")
|
| 216 |
test_emb = torch.load(chose_emb).cuda()
|
| 217 |
-
|
|
|
|
|
|
|
| 218 |
|
| 219 |
v1_emb = test_emb[:, 0]
|
| 220 |
v2_emb = test_emb[:, 1]
|
|
@@ -229,107 +209,57 @@ def generate_image(experiment_name, label, prompts_array, chose_emb):
|
|
| 229 |
text_encoder.get_input_embeddings().weight.data[token_id] = embedding
|
| 230 |
|
| 231 |
total_results = []
|
|
|
|
| 232 |
for prompt in prompts:
|
| 233 |
image = pipe(prompt, guidance_scale = 8.5).images
|
| 234 |
total_results = image + total_results
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
def get_example():
|
| 238 |
case = [
|
| 239 |
[
|
| 240 |
'demo_embeddings/example_1.pt',
|
|
|
|
| 241 |
"Normal",
|
| 242 |
-
"Still use this character",
|
| 243 |
"a photo of a person\na person as a small child\na person as a 20 years old person\na person as a 80 years old person\na person reading a book\na person in the sunset\n",
|
| 244 |
],
|
| 245 |
[
|
| 246 |
'demo_embeddings/example_2.pt',
|
|
|
|
| 247 |
"Man",
|
| 248 |
-
"Still use this character",
|
| 249 |
"a photo of a person\na person with a mustache and a hat\na person wearing headphoneswith red hair\na person with his dog\n",
|
| 250 |
],
|
| 251 |
[
|
| 252 |
'demo_embeddings/example_3.pt',
|
|
|
|
| 253 |
"Woman",
|
| 254 |
-
"Still use this character",
|
| 255 |
"a photo of a person\na person at a beach\na person as a police officer\na person wearing a birthday hat\n",
|
| 256 |
],
|
| 257 |
[
|
| 258 |
'demo_embeddings/example_4.pt',
|
|
|
|
| 259 |
"Man",
|
| 260 |
-
"Still use this character",
|
| 261 |
"a photo of a person\na person holding a bunch of flowers\na person in a lab coat\na person speaking at a podium\n",
|
| 262 |
],
|
| 263 |
[
|
| 264 |
'demo_embeddings/example_5.pt',
|
|
|
|
| 265 |
"Woman",
|
| 266 |
-
"Still use this character",
|
| 267 |
"a photo of a person\na person wearing a kimono\na person in Van Gogh style\nEthereal fantasy concept art of a person\n",
|
| 268 |
],
|
| 269 |
[
|
| 270 |
'demo_embeddings/example_6.pt',
|
|
|
|
| 271 |
"Man",
|
| 272 |
-
"Still use this character",
|
| 273 |
"a photo of a person\na person in the rain\na person meditating\na pencil sketch of a person\n",
|
| 274 |
],
|
| 275 |
]
|
| 276 |
return case
|
| 277 |
|
| 278 |
-
@spaces.GPU
|
| 279 |
-
def run_for_examples(example_emb, gender_GAN, choice, prompts_array):
|
| 280 |
-
prompts = handle_prompts(prompts_array)
|
| 281 |
-
label, experiment_name = response(choice, gender_GAN)
|
| 282 |
-
if experiment_name == "normal_GAN":
|
| 283 |
-
steps = 10000
|
| 284 |
-
Embedding_Manager = normal_Embedding_Manager
|
| 285 |
-
elif experiment_name == "man_GAN":
|
| 286 |
-
steps = 7000
|
| 287 |
-
Embedding_Manager = man_Embedding_Manager
|
| 288 |
-
elif experiment_name == "woman_GAN":
|
| 289 |
-
steps = 6000
|
| 290 |
-
Embedding_Manager = woman_Embedding_Manager
|
| 291 |
-
else:
|
| 292 |
-
print("Hello, please notice this ^_^")
|
| 293 |
-
assert 0
|
| 294 |
-
|
| 295 |
-
embedding_path = os.path.join("training_weight", experiment_name, "embeddings_manager-{}.pt".format(str(steps)))
|
| 296 |
-
Embedding_Manager.load(embedding_path)
|
| 297 |
-
print("embedding_path:",embedding_path)
|
| 298 |
-
print("label:",label)
|
| 299 |
-
|
| 300 |
-
test_emb = torch.load(example_emb).cuda()
|
| 301 |
-
v1_emb = test_emb[:, 0]
|
| 302 |
-
v2_emb = test_emb[:, 1]
|
| 303 |
-
embeddings = [v1_emb, v2_emb]
|
| 304 |
-
|
| 305 |
-
tokens = ["v1*", "v2*"]
|
| 306 |
-
tokenizer.add_tokens(tokens)
|
| 307 |
-
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
| 308 |
-
|
| 309 |
-
text_encoder.resize_token_embeddings(len(tokenizer), pad_to_multiple_of = 8)
|
| 310 |
-
for token_id, embedding in zip(token_ids, embeddings):
|
| 311 |
-
text_encoder.get_input_embeddings().weight.data[token_id] = embedding
|
| 312 |
-
|
| 313 |
-
total_results = []
|
| 314 |
-
i = 0
|
| 315 |
-
for prompt in prompts:
|
| 316 |
-
image = pipe(prompt, guidance_scale = 8.5).images
|
| 317 |
-
total_results = image + total_results
|
| 318 |
-
i+=1
|
| 319 |
-
if i < len(prompts):
|
| 320 |
-
yield total_results, gr.update(visible=True, value="<h3>(Not Finished) Generating ···</h3>")
|
| 321 |
-
else:
|
| 322 |
-
yield total_results, gr.update(visible=True, value="<h3>Generation Finished</h3>")
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
def set_text_unfinished():
|
| 326 |
-
return gr.update(visible=True, value="<h3>(Not Finished) Generating ···</h3>")
|
| 327 |
-
|
| 328 |
-
def set_text_finished():
|
| 329 |
-
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
|
| 334 |
with gr.Blocks(css=css) as demo: # css=css
|
| 335 |
# binary_matrixes = gr.State([])
|
|
@@ -344,17 +274,12 @@ with gr.Blocks(css=css) as demo: # css=css
|
|
| 344 |
prompts_array = gr.Textbox(lines = 3,
|
| 345 |
label="Prompts (each line corresponds to a frame).",
|
| 346 |
info="Give simple prompt is enough to achieve good face fidelity",
|
| 347 |
-
# placeholder="A photo of a person",
|
| 348 |
value="a photo of a person\na person reading a book\na person wearing a Christmas hat\na Fauvism painting of a person\n",
|
| 349 |
interactive=True)
|
| 350 |
choice = gr.Radio(choices=["Create a new character", "Still use this character"], label="Choose your action")
|
| 351 |
|
| 352 |
-
gender_GAN = gr.Radio(choices=["Normal", "Man", "Woman"], label="Choose your model version")
|
| 353 |
-
|
| 354 |
-
label = gr.Text(label="Select the action you want to take", visible=False)
|
| 355 |
-
experiment_name = gr.Text(label="Select the GAN you want to take", visible=False)
|
| 356 |
chose_emb = gr.File(label="Uploaded files", type="filepath", visible=False)
|
| 357 |
-
example_emb = gr.File(label="Uploaded files", type="filepath", visible=False)
|
| 358 |
|
| 359 |
generate = gr.Button("Generate!😊", variant="primary")
|
| 360 |
|
|
@@ -363,33 +288,21 @@ with gr.Blocks(css=css) as demo: # css=css
|
|
| 363 |
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
|
| 364 |
|
| 365 |
generate.click(
|
| 366 |
-
fn=set_text_unfinished,
|
| 367 |
-
outputs=generated_information
|
| 368 |
-
).then(
|
| 369 |
-
fn=response,
|
| 370 |
-
inputs=[choice, gender_GAN],
|
| 371 |
-
outputs=[label, experiment_name],
|
| 372 |
-
).then(
|
| 373 |
fn=generate_image,
|
| 374 |
-
inputs=[
|
| 375 |
-
outputs=[gallery, chose_emb]
|
| 376 |
-
).then(
|
| 377 |
-
fn=set_text_finished,
|
| 378 |
-
outputs=generated_information
|
| 379 |
)
|
| 380 |
|
|
|
|
| 381 |
|
| 382 |
gr.Examples(
|
| 383 |
examples=get_example(),
|
| 384 |
-
inputs=[
|
| 385 |
-
run_on_click=
|
| 386 |
-
fn=
|
| 387 |
-
outputs=[gallery, generated_information],
|
| 388 |
)
|
| 389 |
|
| 390 |
gr.Markdown(article)
|
| 391 |
-
# demo.launch(server_name="0.0.0.0", share = False)
|
| 392 |
-
# share_link = demo.launch(share=True)
|
| 393 |
-
# print("Share this link: ", share_link)
|
| 394 |
|
| 395 |
demo.launch() # share=True
|
|
|
|
| 10 |
import requests
|
| 11 |
import time
|
| 12 |
import random
|
| 13 |
+
from style_template import styles
|
| 14 |
import numpy as np
|
| 15 |
import torch
|
| 16 |
import os
|
|
|
|
| 27 |
import models.embedding_manager
|
| 28 |
import importlib
|
| 29 |
import time
|
| 30 |
+
|
| 31 |
import os
|
| 32 |
# os.environ['GRADIO_TEMP_DIR'] = 'qinghewang/tmp'
|
| 33 |
|
|
|
|
| 130 |
loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
|
| 131 |
vit_out_dim = input_dim,
|
| 132 |
)
|
| 133 |
+
|
| 134 |
text_encoder.text_model.embeddings.forward = original_forward
|
| 135 |
|
| 136 |
+
STYLE_NAMES = list(styles.keys())
|
| 137 |
DEFAULT_STYLE_NAME = "Watercolor"
|
| 138 |
MAX_SEED = np.iinfo(np.int32).max
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
def replace_phrases(prompt):
|
| 142 |
replacements = {
|
|
|
|
| 159 |
|
| 160 |
|
| 161 |
@spaces.GPU
|
| 162 |
+
def generate_image(chose_emb, choice, gender_GAN, prompts_array):
|
| 163 |
prompts = handle_prompts(prompts_array)
|
| 164 |
|
| 165 |
+
print("gender:",gender_GAN)
|
| 166 |
|
| 167 |
+
if gender_GAN == "Normal":
|
| 168 |
steps = 10000
|
| 169 |
Embedding_Manager = normal_Embedding_Manager
|
| 170 |
+
elif gender_GAN == "Man":
|
| 171 |
steps = 7000
|
| 172 |
Embedding_Manager = man_Embedding_Manager
|
| 173 |
+
elif gender_GAN == "Woman":
|
| 174 |
steps = 6000
|
| 175 |
Embedding_Manager = woman_Embedding_Manager
|
| 176 |
else:
|
| 177 |
print("Hello, please notice this ^_^")
|
| 178 |
assert 0
|
| 179 |
|
| 180 |
+
embedding_path = os.path.join("training_weight", gender_GAN, "embeddings_manager-{}.pt".format(str(steps)))
|
| 181 |
Embedding_Manager.load(embedding_path)
|
| 182 |
print("embedding_path:",embedding_path)
|
| 183 |
+
print("choice:",choice)
|
| 184 |
|
| 185 |
+
# index = "0"
|
| 186 |
+
save_dir = os.path.join("test_results/" + gender_GAN) # , index
|
| 187 |
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
|
|
|
| 188 |
|
| 189 |
random_embedding = torch.randn(1, 1, input_dim).to(device)
|
| 190 |
+
if choice == "Create a new character":
|
|
|
|
|
|
|
| 191 |
_, emb_dict = Embedding_Manager(tokenized_text=None, embedded_text=None, name_batch=None, random_embeddings = random_embedding, timesteps = None,)
|
|
|
|
| 192 |
test_emb = emb_dict["adained_total_embedding"].to(device)
|
| 193 |
+
elif choice == "Still use this character":
|
|
|
|
|
|
|
| 194 |
test_emb = torch.load(chose_emb).cuda()
|
| 195 |
+
|
| 196 |
+
test_emb_path = os.path.join(save_dir, "id_embeddings.pt")
|
| 197 |
+
torch.save(test_emb, test_emb_path)
|
| 198 |
|
| 199 |
v1_emb = test_emb[:, 0]
|
| 200 |
v2_emb = test_emb[:, 1]
|
|
|
|
| 209 |
text_encoder.get_input_embeddings().weight.data[token_id] = embedding
|
| 210 |
|
| 211 |
total_results = []
|
| 212 |
+
i = 0
|
| 213 |
for prompt in prompts:
|
| 214 |
image = pipe(prompt, guidance_scale = 8.5).images
|
| 215 |
total_results = image + total_results
|
| 216 |
+
i+=1
|
| 217 |
+
if i < len(prompts):
|
| 218 |
+
yield total_results, gr.update(visible=True, value="<h3>(Not Finished) Generating ···</h3>"), test_emb_path
|
| 219 |
+
else:
|
| 220 |
+
yield total_results, gr.update(visible=True, value="<h3>Generation Finished</h3>"), test_emb_path
|
| 221 |
|
| 222 |
def get_example():
|
| 223 |
case = [
|
| 224 |
[
|
| 225 |
'demo_embeddings/example_1.pt',
|
| 226 |
+
'Still use this character',
|
| 227 |
"Normal",
|
|
|
|
| 228 |
"a photo of a person\na person as a small child\na person as a 20 years old person\na person as a 80 years old person\na person reading a book\na person in the sunset\n",
|
| 229 |
],
|
| 230 |
[
|
| 231 |
'demo_embeddings/example_2.pt',
|
| 232 |
+
'Still use this character',
|
| 233 |
"Man",
|
|
|
|
| 234 |
"a photo of a person\na person with a mustache and a hat\na person wearing headphoneswith red hair\na person with his dog\n",
|
| 235 |
],
|
| 236 |
[
|
| 237 |
'demo_embeddings/example_3.pt',
|
| 238 |
+
'Still use this character',
|
| 239 |
"Woman",
|
|
|
|
| 240 |
"a photo of a person\na person at a beach\na person as a police officer\na person wearing a birthday hat\n",
|
| 241 |
],
|
| 242 |
[
|
| 243 |
'demo_embeddings/example_4.pt',
|
| 244 |
+
'Still use this character',
|
| 245 |
"Man",
|
|
|
|
| 246 |
"a photo of a person\na person holding a bunch of flowers\na person in a lab coat\na person speaking at a podium\n",
|
| 247 |
],
|
| 248 |
[
|
| 249 |
'demo_embeddings/example_5.pt',
|
| 250 |
+
'Still use this character',
|
| 251 |
"Woman",
|
|
|
|
| 252 |
"a photo of a person\na person wearing a kimono\na person in Van Gogh style\nEthereal fantasy concept art of a person\n",
|
| 253 |
],
|
| 254 |
[
|
| 255 |
'demo_embeddings/example_6.pt',
|
| 256 |
+
'Still use this character',
|
| 257 |
"Man",
|
|
|
|
| 258 |
"a photo of a person\na person in the rain\na person meditating\na pencil sketch of a person\n",
|
| 259 |
],
|
| 260 |
]
|
| 261 |
return case
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
with gr.Blocks(css=css) as demo: # css=css
|
| 265 |
# binary_matrixes = gr.State([])
|
|
|
|
| 274 |
prompts_array = gr.Textbox(lines = 3,
|
| 275 |
label="Prompts (each line corresponds to a frame).",
|
| 276 |
info="Give simple prompt is enough to achieve good face fidelity",
|
|
|
|
| 277 |
value="a photo of a person\na person reading a book\na person wearing a Christmas hat\na Fauvism painting of a person\n",
|
| 278 |
interactive=True)
|
| 279 |
choice = gr.Radio(choices=["Create a new character", "Still use this character"], label="Choose your action")
|
| 280 |
|
| 281 |
+
gender_GAN = gr.Radio(choices=["Normal", "Man", "Woman"], label="Choose your model version (Only work for 'Create a new character')") # , disabled=False
|
|
|
|
|
|
|
|
|
|
| 282 |
chose_emb = gr.File(label="Uploaded files", type="filepath", visible=False)
|
|
|
|
| 283 |
|
| 284 |
generate = gr.Button("Generate!😊", variant="primary")
|
| 285 |
|
|
|
|
| 288 |
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
|
| 289 |
|
| 290 |
generate.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
fn=generate_image,
|
| 292 |
+
inputs=[chose_emb, choice, gender_GAN, prompts_array],
|
| 293 |
+
outputs=[gallery, generated_information, chose_emb]
|
|
|
|
|
|
|
|
|
|
| 294 |
)
|
| 295 |
|
| 296 |
+
|
| 297 |
|
| 298 |
gr.Examples(
|
| 299 |
examples=get_example(),
|
| 300 |
+
inputs=[chose_emb, choice, gender_GAN, prompts_array],
|
| 301 |
+
run_on_click=False,
|
| 302 |
+
fn=generate_image,
|
| 303 |
+
outputs=[gallery, generated_information, chose_emb],
|
| 304 |
)
|
| 305 |
|
| 306 |
gr.Markdown(article)
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
demo.launch() # share=True
|
training_weight/{man_GAN → Man}/embeddings_manager-7000.pt
RENAMED
|
File without changes
|
training_weight/{normal_GAN → Normal}/embeddings_manager-10000.pt
RENAMED
|
File without changes
|
training_weight/{woman_GAN → Woman}/embeddings_manager-6000.pt
RENAMED
|
File without changes
|