Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import joblib
|
| 5 |
+
import onnxruntime as ort
|
| 6 |
+
|
| 7 |
+
# Load the ONNX model and scaler outside the function for efficiency
|
| 8 |
+
try:
|
| 9 |
+
ort_session = ort.InferenceSession("hiv_model.onnx")
|
| 10 |
+
scaler = joblib.load("hiv_scaler.pkl")
|
| 11 |
+
feature_names = ['Age', 'Sex', 'CD4+ T-cell count', 'Viral load', 'WBC count', 'Hemoglobin', 'Platelet count'] # Match your training data
|
| 12 |
+
|
| 13 |
+
model_loaded = True
|
| 14 |
+
scaler_loaded = True
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"Error loading model or scaler: {e}")
|
| 17 |
+
model_loaded = False
|
| 18 |
+
scaler_loaded = False
|
| 19 |
+
ort_session = None
|
| 20 |
+
scaler = None
|
| 21 |
+
feature_names = [] # Set to empty to avoid errors later
|
| 22 |
+
|
| 23 |
+
def predict_risk(age, sex, cd4_count, viral_load, wbc_count, hemoglobin, platelet_count):
|
| 24 |
+
"""
|
| 25 |
+
Predicts HIV risk probability based on input features.
|
| 26 |
+
"""
|
| 27 |
+
if not model_loaded or not scaler_loaded:
|
| 28 |
+
return "Model or scaler not loaded. Please ensure 'hiv_model.onnx' and 'hiv_scaler.pkl' are in the same directory."
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
# 1. Create a DataFrame
|
| 32 |
+
input_data = {
|
| 33 |
+
'Age': [age],
|
| 34 |
+
'Sex': [0 if sex == "Female" else 1], # Encode Sex
|
| 35 |
+
'CD4+ T-cell count': [cd4_count],
|
| 36 |
+
'Viral load': [viral_load],
|
| 37 |
+
'WBC count': [wbc_count],
|
| 38 |
+
'Hemoglobin': [hemoglobin],
|
| 39 |
+
'Platelet count': [platelet_count]
|
| 40 |
+
}
|
| 41 |
+
input_df = pd.DataFrame(input_data)
|
| 42 |
+
|
| 43 |
+
# 2. Standardize the data
|
| 44 |
+
scaled_values = scaler.transform(input_df[feature_names])
|
| 45 |
+
scaled_df = pd.DataFrame(scaled_values, columns=feature_names)
|
| 46 |
+
|
| 47 |
+
# 3. ONNX Prediction
|
| 48 |
+
input_array = scaled_df[feature_names].values.astype(np.float32) # Enforce float32
|
| 49 |
+
ort_inputs = {ort_session.get_inputs()[0].name: input_array}
|
| 50 |
+
ort_outs = ort_session.run(None, ort_inputs)
|
| 51 |
+
|
| 52 |
+
# 4. Process Output
|
| 53 |
+
probabilities = ort_outs[0][0]
|
| 54 |
+
risk_probability = probabilities[1] # Probability of High Risk
|
| 55 |
+
|
| 56 |
+
return f"High Risk Probability: {risk_probability:.4f}"
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return f"An error occurred during prediction: {e}"
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Define Gradio inputs
|
| 63 |
+
age_input = gr.Number(label="Age", value=30)
|
| 64 |
+
sex_input = gr.Radio(["Female", "Male"], label="Sex", value="Female")
|
| 65 |
+
cd4_input = gr.Number(label="CD4+ T-cell count", value=500)
|
| 66 |
+
viral_input = gr.Number(label="Viral load", value=10000)
|
| 67 |
+
wbc_input = gr.Number(label="WBC count", value=7000)
|
| 68 |
+
hemoglobin_input = gr.Number(label="Hemoglobin", value=14.0)
|
| 69 |
+
platelet_input = gr.Number(label="Platelet count", value=250000)
|
| 70 |
+
|
| 71 |
+
# Create Gradio interface
|
| 72 |
+
iface = gr.Interface(
|
| 73 |
+
fn=predict_risk,
|
| 74 |
+
inputs=[age_input, sex_input, cd4_input, viral_input, wbc_input, hemoglobin_input, platelet_input],
|
| 75 |
+
outputs="text",
|
| 76 |
+
title="Sentinel-P1: HIV Risk Prediction Demo",
|
| 77 |
+
description="Enter blood report values to estimate HIV risk. This is a demonstration model and should not be used for medical advice.",
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
iface.launch()
|