File size: 22,190 Bytes
2106f78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import numpy as np
import pandas as pd
from scipy import stats
from typing import Optional, Dict
from arch import arch_model
from sklearn.mixture import GaussianMixture
from dataclasses import dataclass
from typing import Dict

@dataclass 
class RiskAssessment:
    volatility: float
    var_95: float
    cvar_95: float
    tail_risk: float
    correlation_risk: float
    liquidity_risk: float
    regime_risk: float
    systemic_risk: float
    stress_test_results: Dict[str, float]

@dataclass
class MarketMetrics:
    """Container for market metrics"""
    volatility: float
    skewness: float
    kurtosis: float
    tail_risk: float
    liquidity_score: float
    correlation_structure: Dict[str, float]
    regime_probabilities: Dict[str, float]

    @classmethod
    def get_default(cls) -> 'MarketMetrics':
        """Get default market metrics"""
        return cls(
            volatility=0.15,
            skewness=0.0,
            kurtosis=3.0,
            tail_risk=0.02,
            liquidity_score=0.5,
            correlation_structure={
                'avg_correlation': 0.0,
                'max_correlation': 1.0,
                'min_correlation': -1.0
            },
            regime_probabilities={}
        )

    

class EnhancedRiskMetrics:
    """Calcul amélioré des métriques de risque et performance"""
    
    def __init__(self, returns: pd.Series = None, prices: pd.DataFrame = None, risk_free_rate: float = 0.02):
        self.returns = returns
        self.prices = prices
        self.risk_free_rate = risk_free_rate
        self._cache = {}
        
    def _cached_calculation(self, key: str, calculation_func):
        """Utilise le cache pour les calculs coûteux"""
        if key not in self._cache:
            self._cache[key] = calculation_func()
        return self._cache[key]

    def reset_cache(self):
        """Réinitialise le cache des calculs"""
        self._cache = {}

    def calculate_volatility(self) -> float:
        """Volatilité avec estimation EWMA pour meilleure réactivité"""
        ewm_vol = self.returns.ewm(span=63).std() * np.sqrt(self.trading_days)
        garch_vol = self._fit_garch()
        # Combine les deux estimations
        return 0.7 * ewm_vol + 0.3 * garch_vol

    def calculate_annualized_volatility(self) -> float:
        return self.calculate_volatility()

    def _fit_garch(self) -> float:
        """Implémentation GARCH(1,1) pour volatilité"""
        from arch import arch_model
        model = arch_model(self.returns, vol='Garch', p=1, q=1)
        results = model.fit(disp='off')
        forecast = results.forecast(horizon=1)
        return np.sqrt(forecast.variance.values[-1]) * np.sqrt(self.trading_days)

    def calculate_sharpe_ratio(self) -> float:
        """Sharpe ratio avec ajustement pour skewness"""
        excess_returns = self.returns - self.rf
        self.sr = np.sqrt(self.trading_days) * (excess_returns.mean() / excess_returns.std())  # Stocké dans self
        skew_adj = self._skewness_adjustment()
        return self.sr * skew_adj

    def _skewness_adjustment(self) -> float:
        """Ajustement du Sharpe ratio pour la skewness"""
        skew = stats.skew(self.returns)
        kurt = stats.kurtosis(self.returns)
        adj = 1 - (skew/6) * self.sr + (kurt-3)/24 * self.sr**2
        return adj

    def calculate_sortino_ratio(self) -> float:
        """Sortino ratio avec seuil dynamique"""
        threshold = max(0, self.rf)
        downside_returns = self.returns[self.returns < threshold]
        downside_std = np.sqrt(np.sum(downside_returns**2)/len(self.returns)) * np.sqrt(self.trading_days)
        return (self.returns.mean() - self.rf) * self.trading_days / downside_std

    def calculate_modified_sortino_ratio(self) -> float:
        return self.calculate_sortino_ratio() * (1 + abs(self.returns.skew()) * 0.2)

    def calculate_max_drawdown(self, returns: Optional[pd.Series] = None) -> float:
       """Calculate Maximum Drawdown"""
       if returns is None:
           returns = self.returns
       cumulative = (1 + returns).cumprod()
       running_max = cumulative.expanding().max()
       drawdowns = cumulative / running_max - 1
       return drawdowns.min()

    

    def calculate_conditional_sharpe_ratio(self) -> float:
        """Calcul du ratio de Sharpe conditionnel"""
        var_95 = self.calculate_var(confidence=0.95)
        cvar_95 = self.calculate_cvar(confidence=0.95)
        return (self.returns.mean() - self.rf) * np.sqrt(self.trading_days) / cvar_95

    
    def calculate_tail_ratio(self, returns: pd.Series) -> float:
        """Calculate tail ratio"""
        if returns is None or len(returns) == 0:
            return 1.0
        return abs(np.percentile(returns, 95)) / abs(np.percentile(returns, 5))


    def calculate_beta(self, market_returns: pd.Series = None) -> float:
        """Calcul du bêta avec correction pour l'autocorrélation"""
        if market_returns is None:
            # Utiliser un benchmark par défaut si non fourni
            market_returns = self.returns.mean(axis=1) if isinstance(self.returns, pd.DataFrame) else self.returns
        
        # Correction pour l'autocorrélation
        returns_lag = pd.concat([self.returns, self.returns.shift(1)], axis=1).dropna()
        market_lag = pd.concat([market_returns, market_returns.shift(1)], axis=1).dropna()
    
        beta = np.cov(returns_lag.iloc[:,0], market_lag.iloc[:,0])[0,1] / np.var(market_lag.iloc[:,0])
        return beta

    def calculate_regime_based_risk(self) -> Dict[str, float]:
        """Analyse du risque basée sur les régimes de marché"""
        # Détection des régimes avec GMM
        gmm = GaussianMixture(n_components=3, random_state=42)
        gmm.fit(self.returns.values.reshape(-1, 1))
        regimes = gmm.predict(self.returns.values.reshape(-1, 1))
    
        regime_risks = {}
        for i in range(3):
            regime_returns = self.returns[regimes == i]
            regime_risks[f'regime_{i}'] = {
                'volatility': regime_returns.std() * np.sqrt(self.trading_days),
                'var_95': np.percentile(regime_returns, 5),
                'mean_return': regime_returns.mean() * self.trading_days
            }
        return regime_risks

    def _calculate_regime_metrics(self, returns: pd.Series) -> Dict[str, Dict[str, float]]:
        """Calculate metrics under different market regimes"""
        try:
            # Assurer que returns est une Series
            if isinstance(returns, np.ndarray):
                returns = pd.Series(returns)
                
            # Vérifier la validité des données
            if returns is None or len(returns) == 0:
                return {}
                
            # Reshape les données pour le GMM
            data = returns.values.reshape(-1, 1)
            
            # Fit le modèle GMM
            gmm = GaussianMixture(n_components=3, random_state=42)
            gmm.fit(data)
            
            # Prédire les régimes
            regimes = gmm.predict(data)
            
            # Créer un DataFrame avec les returns et les régimes
            regime_data = pd.DataFrame({
                'returns': returns,
                'regime': regimes
            })
            
            # Calculer les métriques par régime
            regime_metrics = {}
            for i in range(gmm.n_components):
                regime_returns = regime_data[regime_data['regime'] == i]['returns']
                if len(regime_returns) > 0:
                    regime_metrics[f'regime_{i}'] = {
                        'frequency': len(regime_returns) / len(returns),
                        'avg_return': regime_returns.mean() * 252,  # Annualisé
                        'volatility': regime_returns.std() * np.sqrt(252),
                        'sharpe': self.calculate_regime_sharpe(regime_returns),
                        'max_drawdown': self.calculate_max_drawdown(regime_returns),
                        'var_95': np.percentile(regime_returns, 5),
                        'skewness': stats.skew(regime_returns),
                        'kurtosis': stats.kurtosis(regime_returns)
                    }
                    
            return regime_metrics
            
        except Exception as e:
            print(f"Error calculating regime metrics: {str(e)}")
            return {}
    
    def calculate_regime_sharpe(self, returns: pd.Series) -> float:
        """Calculate Sharpe ratio for specific regime"""
        try:
            if len(returns) == 0:
                return 0.0
                
            # Calculer le ratio de Sharpe annualisé 
            excess_returns = returns - (self.risk_free_rate / 252)
            if excess_returns.std() == 0:
                return 0.0
                
            return np.sqrt(252) * excess_returns.mean() / excess_returns.std()
            
        except Exception as e:
            print(f"Error calculating regime Sharpe: {str(e)}")
            return 0.0
            
    def calculate_max_drawdown(self, returns: pd.Series) -> float:
        """Calculate maximum drawdown"""
        try:
            if len(returns) == 0:
                return 0.0
                
            # Calculer les rendements cumulatifs
            cum_returns = (1 + returns).cumprod()
            rolling_max = cum_returns.expanding().max()
            drawdowns = cum_returns / rolling_max - 1
            
            return drawdowns.min()
            
        except Exception as e:
            print(f"Error calculating max drawdown: {str(e)}")
            return 0.0

    def calculate_extreme_drawdown_risk(self, confidence: float = 0.95) -> float:
        """Estimation du risque de drawdown extrême"""
        rolling_returns = self.returns.rolling(window=63).sum()
        return np.percentile(rolling_returns, (1-confidence)*100)

    def calculate_garch_volatility(self) -> pd.Series:
        """Estimation GARCH de la volatilité"""
        try:
            import arch
            model = arch.arch_model(self.returns, vol='Garch', p=1, q=1)
            res = model.fit(disp='off')
            return np.sqrt(res.conditional_volatility) * np.sqrt(self.trading_days)
        except ImportError:
            return self.returns.rolling(window=63).std() * np.sqrt(self.trading_days)

    def calculate_information_ratio(self, benchmark_returns: pd.Series) -> float:
        """Calcul du ratio d'information avec ajustement"""
        active_returns = self.returns - benchmark_returns
        tracking_error = active_returns.std() * np.sqrt(self.trading_days)
        ir = active_returns.mean() * self.trading_days / tracking_error
        return ir

    def calculate_cagr(self, returns: pd.Series) -> float:
        """Calculate Compound Annual Growth Rate"""
        total_return = (1 + returns).prod()
        n_years = len(returns) / 252  # Assuming 252 trading days per year
        return (total_return ** (1/n_years)) - 1

    def calculate_treynor_ratio(self) -> float:
        beta = self.calculate_beta()
        if abs(beta) < 1e-6:
            return np.inf
        return (self.returns.mean() - self.rf) / beta 

    def calculate_calmar_ratio(self) -> float:
        max_dd = self.calculate_max_drawdown()
        if abs(max_dd) < 1e-6:
            return np.inf
        return -self.calculate_cagr(self.returns) / max_dd

    def calculate_average_drawdown(self) -> float:
        cum_returns = (1 + self.returns).cumprod()
        rolling_max = cum_returns.expanding().max()
        drawdowns = cum_returns / rolling_max - 1
        return drawdowns.mean()

    def calculate_drawdown_duration(self) -> int:
        cum_returns = (1 + self.returns).cumprod()
        rolling_max = cum_returns.expanding().max()
        drawdowns = cum_returns / rolling_max - 1
    
        in_drawdown = False
        current_duration = 0
        max_duration = 0
    
        for dd in drawdowns:
            if dd < 0:
                if not in_drawdown:
                    in_drawdown = True
                current_duration += 1
            else:
                if in_drawdown:
                    max_duration = max(max_duration, current_duration)
                    current_duration = 0
                    in_drawdown = False
                
        return max_duration

    def calculate_kurtosis_adjusted_sharpe(self) -> float:
        sharpe = self.calculate_sharpe_ratio()
        kurt = self.returns.kurtosis()
        return sharpe * (1 - (kurt - 3) * 0.1)

    def calculate_omega_ratio(self, threshold: float = 0) -> float:
       returns_above = self.returns[self.returns > threshold].sum()
       returns_below = abs(self.returns[self.returns <= threshold].sum())
       return returns_above / returns_below if returns_below != 0 else np.inf

    def calculate_historical_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
        """Calculate historical Value at Risk"""
        if returns is None or len(returns) == 0:
            return 0.0
        return np.percentile(returns, (1 - confidence) * 100)

    
    def calculate_gaussian_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
        try:
            z_score = stats.norm.ppf(confidence)
            mu = returns.mean()
            sigma = returns.std()
            return -(mu + z_score * sigma)
        except Exception as e:
            print(f"Error calculating Gaussian VaR: {e}")
            return 0.0

    def calculate_downside_deviation(self, returns: pd.Series) -> float:
        """Calculate downside deviation"""
        if returns is None or len(returns) == 0:
            return 0.0
        negative_returns = returns[returns < 0]
        return negative_returns.std() * np.sqrt(252) if len(negative_returns) > 0 else 0.0

    def calculate_upside_volatility(self, returns: Optional[pd.Series] = None) -> float:
         try:
             if returns is None:
                 returns = self.returns
             positive_returns = returns[returns > 0]
             return positive_returns.std() * np.sqrt(252) if len(positive_returns) > 0 else 0.0
         except Exception as e:
             print(f"Error calculating upside volatility: {e}")
             return 0.0


    def calculate_rolling_metrics(self, window: int = 252):
        """Calculate rolling versions of key metrics"""
        metrics = {
            'rolling_sharpe': self.returns.rolling(window).apply(
               lambda x: np.sqrt(252) * (x.mean() - self.risk_free_rate/252) / x.std()
            ),
            'rolling_sortino': self.returns.rolling(window).apply(
                lambda x: np.sqrt(252) * x.mean() / x[x < 0].std() if len(x[x < 0]) > 0 else np.inf
            ),
            'rolling_volatility': self.returns.rolling(window).std() * np.sqrt(252),
            'rolling_beta': self.returns.rolling(window).apply(
                lambda x: np.cov(x, pd.Series(1, index=x.index))[0,1] / 1
            ),
            'rolling_var': self.returns.rolling(window).quantile(0.05)
        }
        return metrics

    def calculate_regime_sharpe(self, returns: pd.Series) -> float:
        if returns.std() == 0:
            return np.inf
        return np.sqrt(252) * returns.mean() / returns.std()

    def calculate_regime_drawdown(self, returns: pd.Series) -> float:
        return self.calculate_max_drawdown(returns)

    def calculate_skewness_adjusted_sharpe(self) -> float:
        """Calculate Sharpe ratio adjusted for skewness"""
        sharpe = self.calculate_sharpe_ratio()
        skew = stats.skew(self.returns)
        return sharpe * (1 - (skew/6))
    
    def calculate_rolling_sharpe(self, window: int) -> pd.Series:
        """Calculate rolling Sharpe ratio"""
        rolling_mean = self.returns.rolling(window=window).mean()
        rolling_std = self.returns.rolling(window=window).std()
        return np.sqrt(252) * (rolling_mean - self.rf) / rolling_std

    def calculate_rolling_sortino(self, window: int) -> pd.Series:
        """Calculate rolling Sortino ratio"""
        rolling_mean = self.returns.rolling(window=window).mean()
        downside_returns = self.returns[self.returns < 0]
        rolling_downside = downside_returns.rolling(window=window).std()
        return np.sqrt(252) * (rolling_mean - self.rf) / rolling_downside

    def calculate_rolling_volatility(self, window: int) -> pd.Series:
        """Calculate rolling volatility"""
        return self.returns.rolling(window=window).std() * np.sqrt(252)

    def calculate_rolling_beta(self, window: int) -> pd.Series:
        """Calculate rolling beta"""
        returns = pd.DataFrame(self.returns)  # Convertir en DataFrame
        market_returns = self.returns  # Utiliser directement les returns comme benchmark
    
        # Calculer covs et vars roulants
        rolling_cov = returns.rolling(window=window).cov(market_returns)
        rolling_var = pd.Series(market_returns).rolling(window=window).var()
    
        return rolling_cov / rolling_var

    def calculate_rolling_var(self, window: int) -> pd.Series:
        """Calculate rolling VaR"""
        return self.returns.rolling(window=window).quantile(0.05)
    
    def calculate_skewness(self) -> float:
        """Calculate returns skewness"""
        return stats.skew(self.returns)

    def calculate_kurtosis(self) -> float:
        """Calculate returns kurtosis"""
        return stats.kurtosis(self.returns)

    def calculate_jarque_bera(self, returns: Optional[pd.Series] = None) -> float:
        try:
            if returns is None:
                returns = self.returns
            return stats.jarque_bera(returns)[0]
        except Exception as e:
            print(f"Error calculating Jarque-Bera: {e}")
            return 0.0

    def calculate_alpha(self) -> float:
        """Calculate Jensen's alpha"""
        beta = self.calculate_beta()
        return self.returns.mean() - (self.rf + beta * (self.returns.mean() - self.rf))

    def calculate_r_squared(self) -> float:
        """Calculate R-squared"""
        # Utiliser le benchmark ou créer un market proxy
        market_returns = self.returns.mean() if isinstance(self.returns, pd.DataFrame) else self.returns
        # Calculer la corrélation au carré
        correlation = self.returns.corr(market_returns)
        return correlation ** 2

    def calculate_ulcer_index(self, returns: pd.Series) -> float:
        """Calculate Ulcer Index"""
        if returns is None or len(returns) == 0:
            return 0.0
        cumulative = (1 + returns).cumprod()
        drawdowns = cumulative / cumulative.expanding().max() - 1
        return np.sqrt(np.mean(drawdowns ** 2))


    def calculate_pain_index(self, returns: pd.Series) -> float:
        """Calculate Pain index"""
        cumulative = (1 + returns).cumprod()
        drawdowns = 1 - cumulative / cumulative.expanding().max()
        return drawdowns.mean()
    
    def calculate_pain_ratio(self, returns: Optional[pd.Series] = None) -> float:
        try:
            if returns is None:
                returns = self.returns
            pain_index = self.calculate_pain_index(returns)
            if pain_index == 0:
                return 0.0
            return (returns.mean() - self.risk_free_rate) / pain_index
        except Exception as e:
            print(f"Error calculating pain ratio: {e}")
            return 0.0

    
    def _calculate_drawdowns(self) -> np.ndarray:
        """Calculate drawdown series"""
        cumulative_returns = (1 + self.returns).cumprod()
        rolling_max = cumulative_returns.expanding().max()
        drawdowns = (cumulative_returns - rolling_max) / rolling_max
        return drawdowns.values


    def calculate_cvar(self, returns: pd.Series, confidence: float = 0.95) -> float:
        """Calculate Conditional Value at Risk"""
        var = self.calculate_var(returns, confidence)
        return returns[returns <= var].mean()
    
    
    
    def calculate_alpha(self, returns: pd.Series) -> float:
        """Calculate alpha"""
        beta = self.calculate_beta(returns)
        market_return = self.returns.mean()
        return returns.mean() - (self.risk_free_rate + beta * (market_return - self.risk_free_rate))
    

    def calculate_tracking_error(self) -> float:
        """Calculate tracking error"""
        if self.returns is None:
            return 0.0
        try:
            return self.returns.std() * np.sqrt(252)
        except Exception as e:
            print(f"Error calculating tracking error: {e}")
            return 0.0

    
    def calculate_burke_ratio(self) -> float:
        """Calculate Burke ratio with proper error handling"""
        try:
            if self.returns is None or len(self.returns) == 0:
                return 0.0
                
            drawdowns = self._calculate_drawdowns()
            squared_drawdowns = np.sum(drawdowns ** 2)
            
            if squared_drawdowns == 0:
                return 0.0
                
            return (self.returns.mean() - self.risk_free_rate/252) / np.sqrt(squared_drawdowns)
            
        except Exception as e:
            print(f"Error calculating Burke ratio: {e}")
            return 0.0

    def calculate_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
        """Calculate Value at Risk"""
        try:
            if returns is None or len(returns) == 0:
                return 0.0
            return np.percentile(returns, (1 - confidence) * 100)
        except Exception as e:
            print(f"Error calculating VaR: {e}")
            return 0.0
    
    def calculate_volatility_skew(self, returns: pd.Series) -> float:
        """Calculate volatility skew"""
        try:
            if returns is None:
                return 0.0
            positive_returns = returns[returns > 0]
            negative_returns = returns[returns < 0]
            return positive_returns.std() / negative_returns.std() if len(negative_returns) > 0 else 1.0
        except Exception as e:
            print(f"Error calculating volatility skew: {e}")
            return 1.0