Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,200 +1,216 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
-
import os
|
| 4 |
-
from typing import List, Literal, Optional
|
| 5 |
-
import joblib
|
| 6 |
-
import numpy as np
|
| 7 |
-
import pandas as pd
|
| 8 |
-
import requests
|
| 9 |
-
import shap
|
| 10 |
-
from sklearn.metrics import roc_auc_score, precision_recall_curve, auc
|
| 11 |
-
|
| 12 |
-
# =====================================================
|
| 13 |
-
# CONFIG
|
| 14 |
-
# =====================================================
|
| 15 |
-
|
| 16 |
-
# Replace these with your NoCoDB API details
|
| 17 |
-
NOCO_API_URL = "https://dun3co-sdc-nocodb.hf.space/api/v2/tables/m39a8axnn3980w9/records"
|
| 18 |
-
NOCO_VIEW_ID = "vwjuv5jnaet9npuu"
|
| 19 |
-
NOCO_API_TOKEN = os.getenv("NOCODB_TOKEN")
|
| 20 |
-
|
| 21 |
-
HEADERS = {"xc-token": NOCO_API_TOKEN}
|
| 22 |
-
|
| 23 |
-
# =====================================================
|
| 24 |
-
# MODEL LOADING
|
| 25 |
-
# =====================================================
|
| 26 |
-
|
| 27 |
-
model = joblib.load("model_1mvp.pkl")
|
| 28 |
-
app = FastAPI(title="Logistic Regression API 2")
|
| 29 |
-
|
| 30 |
-
# =====================================================
|
| 31 |
-
# DATA SCHEMAS
|
| 32 |
-
# =====================================================
|
| 33 |
-
|
| 34 |
-
class InputData(BaseModel):
|
| 35 |
-
age: int
|
| 36 |
-
balance: float
|
| 37 |
-
day: int
|
| 38 |
-
campaign: int
|
| 39 |
-
job: str
|
| 40 |
-
education: str
|
| 41 |
-
default: Literal["yes", "no", "unknown"]
|
| 42 |
-
housing: Literal["yes", "no", "unknown"]
|
| 43 |
-
loan: Literal["yes", "no", "unknown"]
|
| 44 |
-
months_since_previous_contact: str
|
| 45 |
-
n_previous_contacts: str
|
| 46 |
-
poutcome: str
|
| 47 |
-
had_contact: bool
|
| 48 |
-
is_single: bool
|
| 49 |
-
uknown_contact: bool
|
| 50 |
-
|
| 51 |
-
class BatchInputData(BaseModel):
|
| 52 |
-
data: List[InputData]
|
| 53 |
-
|
| 54 |
-
# =====================================================
|
| 55 |
-
# HEALTH CHECK
|
| 56 |
-
# =====================================================
|
| 57 |
-
|
| 58 |
-
@app.get("/health")
|
| 59 |
-
def health():
|
| 60 |
-
return {"status": "ok"}
|
| 61 |
-
|
| 62 |
-
# =====================================================
|
| 63 |
-
# NOCODB DATA FETCHING
|
| 64 |
-
# =====================================================
|
| 65 |
-
|
| 66 |
-
def fetch_test_data(limit: int = 100):
|
| 67 |
-
"""Fetch test or sample data from NoCoDB view."""
|
| 68 |
-
params = {"offset": 0, "limit": limit, "viewId": NOCO_VIEW_ID}
|
| 69 |
-
res = requests.get(NOCO_API_URL, headers=HEADERS, params=params)
|
| 70 |
-
res.raise_for_status()
|
| 71 |
-
data = res.json()["list"]
|
| 72 |
-
return pd.DataFrame(data)
|
| 73 |
-
|
| 74 |
-
# =====================================================
|
| 75 |
-
# PREDICTION ENDPOINT
|
| 76 |
-
# =====================================================
|
| 77 |
-
|
| 78 |
-
@app.post("/predict")
|
| 79 |
-
def predict(batch: BatchInputData):
|
| 80 |
-
try:
|
| 81 |
-
X = pd.DataFrame([item.dict() for item in batch.data])
|
| 82 |
-
preds = model.predict(X)
|
| 83 |
-
probs = model.predict_proba(X)[:, 1]
|
| 84 |
-
return {
|
| 85 |
-
"predictions": preds.tolist(),
|
| 86 |
-
"probabilities": probs.tolist()
|
| 87 |
-
}
|
| 88 |
-
except Exception as e:
|
| 89 |
-
import traceback
|
| 90 |
-
return {"error": str(e), "trace": traceback.format_exc()}
|
| 91 |
-
|
| 92 |
-
# =====================================================
|
| 93 |
-
# EXPLAINABILITY ENDPOINT
|
| 94 |
-
# =====================================================
|
| 95 |
-
|
| 96 |
-
@app.post("/explain")
|
| 97 |
-
def explain(batch: Optional[BatchInputData] = None, limit: int = 100):
|
| 98 |
-
"""Generate SHAP values either from provided data or from NoCoDB test data."""
|
| 99 |
-
try:
|
| 100 |
-
if batch:
|
| 101 |
-
X = pd.DataFrame([item.dict() for item in batch.data])
|
| 102 |
-
source = "client batch"
|
| 103 |
-
else:
|
| 104 |
-
X = fetch_test_data(limit=limit)
|
| 105 |
-
source = f"NoCoDB (limit={limit})"
|
| 106 |
-
|
| 107 |
-
print(f"[DEBUG] SHAP explain called using {source} | shape={X.shape} | cols={list(X.columns)}")
|
| 108 |
-
|
| 109 |
-
#
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
"
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
"
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import os
|
| 4 |
+
from typing import List, Literal, Optional
|
| 5 |
+
import joblib
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import requests
|
| 9 |
+
import shap
|
| 10 |
+
from sklearn.metrics import roc_auc_score, precision_recall_curve, auc
|
| 11 |
+
|
| 12 |
+
# =====================================================
|
| 13 |
+
# CONFIG
|
| 14 |
+
# =====================================================
|
| 15 |
+
|
| 16 |
+
# Replace these with your NoCoDB API details
|
| 17 |
+
NOCO_API_URL = "https://dun3co-sdc-nocodb.hf.space/api/v2/tables/m39a8axnn3980w9/records"
|
| 18 |
+
NOCO_VIEW_ID = "vwjuv5jnaet9npuu"
|
| 19 |
+
NOCO_API_TOKEN = os.getenv("NOCODB_TOKEN")
|
| 20 |
+
|
| 21 |
+
HEADERS = {"xc-token": NOCO_API_TOKEN}
|
| 22 |
+
|
| 23 |
+
# =====================================================
|
| 24 |
+
# MODEL LOADING
|
| 25 |
+
# =====================================================
|
| 26 |
+
|
| 27 |
+
model = joblib.load("model_1mvp.pkl")
|
| 28 |
+
app = FastAPI(title="Logistic Regression API 2")
|
| 29 |
+
|
| 30 |
+
# =====================================================
|
| 31 |
+
# DATA SCHEMAS
|
| 32 |
+
# =====================================================
|
| 33 |
+
|
| 34 |
+
class InputData(BaseModel):
|
| 35 |
+
age: int
|
| 36 |
+
balance: float
|
| 37 |
+
day: int
|
| 38 |
+
campaign: int
|
| 39 |
+
job: str
|
| 40 |
+
education: str
|
| 41 |
+
default: Literal["yes", "no", "unknown"]
|
| 42 |
+
housing: Literal["yes", "no", "unknown"]
|
| 43 |
+
loan: Literal["yes", "no", "unknown"]
|
| 44 |
+
months_since_previous_contact: str
|
| 45 |
+
n_previous_contacts: str
|
| 46 |
+
poutcome: str
|
| 47 |
+
had_contact: bool
|
| 48 |
+
is_single: bool
|
| 49 |
+
uknown_contact: bool
|
| 50 |
+
|
| 51 |
+
class BatchInputData(BaseModel):
|
| 52 |
+
data: List[InputData]
|
| 53 |
+
|
| 54 |
+
# =====================================================
|
| 55 |
+
# HEALTH CHECK
|
| 56 |
+
# =====================================================
|
| 57 |
+
|
| 58 |
+
@app.get("/health")
|
| 59 |
+
def health():
|
| 60 |
+
return {"status": "ok"}
|
| 61 |
+
|
| 62 |
+
# =====================================================
|
| 63 |
+
# NOCODB DATA FETCHING
|
| 64 |
+
# =====================================================
|
| 65 |
+
|
| 66 |
+
def fetch_test_data(limit: int = 100):
|
| 67 |
+
"""Fetch test or sample data from NoCoDB view."""
|
| 68 |
+
params = {"offset": 0, "limit": limit, "viewId": NOCO_VIEW_ID}
|
| 69 |
+
res = requests.get(NOCO_API_URL, headers=HEADERS, params=params)
|
| 70 |
+
res.raise_for_status()
|
| 71 |
+
data = res.json()["list"]
|
| 72 |
+
return pd.DataFrame(data)
|
| 73 |
+
|
| 74 |
+
# =====================================================
|
| 75 |
+
# PREDICTION ENDPOINT
|
| 76 |
+
# =====================================================
|
| 77 |
+
|
| 78 |
+
@app.post("/predict")
|
| 79 |
+
def predict(batch: BatchInputData):
|
| 80 |
+
try:
|
| 81 |
+
X = pd.DataFrame([item.dict() for item in batch.data])
|
| 82 |
+
preds = model.predict(X)
|
| 83 |
+
probs = model.predict_proba(X)[:, 1]
|
| 84 |
+
return {
|
| 85 |
+
"predictions": preds.tolist(),
|
| 86 |
+
"probabilities": probs.tolist()
|
| 87 |
+
}
|
| 88 |
+
except Exception as e:
|
| 89 |
+
import traceback
|
| 90 |
+
return {"error": str(e), "trace": traceback.format_exc()}
|
| 91 |
+
|
| 92 |
+
# =====================================================
|
| 93 |
+
# EXPLAINABILITY ENDPOINT
|
| 94 |
+
# =====================================================
|
| 95 |
+
|
| 96 |
+
@app.post("/explain")
|
| 97 |
+
def explain(batch: Optional[BatchInputData] = None, limit: int = 100):
|
| 98 |
+
"""Generate SHAP values either from provided data or from NoCoDB test data."""
|
| 99 |
+
try:
|
| 100 |
+
if batch:
|
| 101 |
+
X = pd.DataFrame([item.dict() for item in batch.data])
|
| 102 |
+
source = "client batch"
|
| 103 |
+
else:
|
| 104 |
+
X = fetch_test_data(limit=limit)
|
| 105 |
+
source = f"NoCoDB (limit={limit})"
|
| 106 |
+
|
| 107 |
+
print(f"[DEBUG] SHAP explain called using {source} | shape={X.shape} | cols={list(X.columns)}")
|
| 108 |
+
|
| 109 |
+
# Remove ID and target columns if they exist
|
| 110 |
+
drop_cols = [c for c in ["Id", "y", "target"] if c in X.columns]
|
| 111 |
+
if drop_cols:
|
| 112 |
+
print(f"[DEBUG] Dropping columns not used for prediction: {drop_cols}")
|
| 113 |
+
X = X.drop(columns=drop_cols)
|
| 114 |
+
|
| 115 |
+
# Handle pipelines correctly
|
| 116 |
+
if hasattr(model, "named_steps"):
|
| 117 |
+
preprocessor = model.named_steps["preprocessor"]
|
| 118 |
+
classifier = model.named_steps["classifier"]
|
| 119 |
+
|
| 120 |
+
X_transformed = preprocessor.transform(X)
|
| 121 |
+
feature_names = preprocessor.get_feature_names_out()
|
| 122 |
+
|
| 123 |
+
print(f"[DEBUG] Transformed shape: {X_transformed.shape} | n_features={len(feature_names)}")
|
| 124 |
+
|
| 125 |
+
explainer = shap.Explainer(classifier, X_transformed)
|
| 126 |
+
shap_values = explainer(X_transformed)
|
| 127 |
+
|
| 128 |
+
shap_summary = pd.DataFrame({
|
| 129 |
+
"feature": feature_names,
|
| 130 |
+
"mean_abs_shap": np.abs(shap_values.values).mean(axis=0)
|
| 131 |
+
}).sort_values("mean_abs_shap", ascending=False)
|
| 132 |
+
else:
|
| 133 |
+
# If model is not a pipeline
|
| 134 |
+
explainer = shap.Explainer(model, X)
|
| 135 |
+
shap_values = explainer(X)
|
| 136 |
+
shap_summary = pd.DataFrame({
|
| 137 |
+
"feature": X.columns,
|
| 138 |
+
"mean_abs_shap": np.abs(shap_values.values).mean(axis=0)
|
| 139 |
+
}).sort_values("mean_abs_shap", ascending=False)
|
| 140 |
+
|
| 141 |
+
print(f"[DEBUG] SHAP summary created successfully with {len(shap_summary)} features.")
|
| 142 |
+
return {"n_samples": len(X), "shap_summary": shap_summary.to_dict(orient="records")}
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
import traceback
|
| 146 |
+
print("[ERROR] SHAP explain failed:", e)
|
| 147 |
+
print(traceback.format_exc())
|
| 148 |
+
return {"error": str(e), "trace": traceback.format_exc()}
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# =====================================================
|
| 152 |
+
# METRICS ENDPOINT
|
| 153 |
+
# =====================================================
|
| 154 |
+
|
| 155 |
+
@app.post("/metrics")
|
| 156 |
+
def metrics(batch: Optional[BatchInputData] = None, y: Optional[List[int]] = None, limit: int = 100):
|
| 157 |
+
"""Compute ROC AUC and threshold analysis, using input or NoCoDB test data."""
|
| 158 |
+
try:
|
| 159 |
+
# Use provided data or fallback to test data from NoCoDB
|
| 160 |
+
if batch:
|
| 161 |
+
X = pd.DataFrame([item.dict() for item in batch.data])
|
| 162 |
+
else:
|
| 163 |
+
X = fetch_test_data(limit=limit)
|
| 164 |
+
|
| 165 |
+
if y is None:
|
| 166 |
+
# Look for 'y_true' column in NoCoDB data
|
| 167 |
+
if "y_" in X.columns:
|
| 168 |
+
y = X["y"].astype(int).tolist()
|
| 169 |
+
X = X.drop(columns=["y"])
|
| 170 |
+
else:
|
| 171 |
+
return {"error": "ye values not provided or found in dataset"}
|
| 172 |
+
|
| 173 |
+
y_prob = model.predict_proba(X)[:, 1]
|
| 174 |
+
roc_auc = roc_auc_score(y, y_prob)
|
| 175 |
+
precision, recall, thresholds = precision_recall_curve(y, y_prob)
|
| 176 |
+
pr_auc = auc(recall, precision)
|
| 177 |
+
|
| 178 |
+
return {
|
| 179 |
+
"roc_auc": roc_auc,
|
| 180 |
+
"pr_auc": pr_auc,
|
| 181 |
+
"thresholds": thresholds.tolist()[:20], # limit output size
|
| 182 |
+
"precision": precision.tolist()[:20],
|
| 183 |
+
"recall": recall.tolist()[:20]
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
except Exception as e:
|
| 187 |
+
import traceback
|
| 188 |
+
return {"error": str(e), "trace": traceback.format_exc()}
|
| 189 |
+
|
| 190 |
+
@app.get("/coefficients")
|
| 191 |
+
def coefficients():
|
| 192 |
+
"""
|
| 193 |
+
Return logistic regression coefficients and feature names.
|
| 194 |
+
Works if your model is a pipeline with 'preprocessor' and 'classifier' steps.
|
| 195 |
+
"""
|
| 196 |
+
try:
|
| 197 |
+
# Extract classifier and preprocessor
|
| 198 |
+
classifier = model.named_steps["classifier"]
|
| 199 |
+
preprocessor = model.named_steps["preprocessor"]
|
| 200 |
+
|
| 201 |
+
# Get feature names after preprocessing
|
| 202 |
+
feature_names = preprocessor.get_feature_names_out()
|
| 203 |
+
|
| 204 |
+
# Get coefficients
|
| 205 |
+
coefficients = classifier.coef_[0]
|
| 206 |
+
|
| 207 |
+
df = pd.DataFrame({
|
| 208 |
+
"feature": feature_names,
|
| 209 |
+
"coefficient": coefficients.tolist()
|
| 210 |
+
})
|
| 211 |
+
|
| 212 |
+
return {"coefficients": df.to_dict(orient="records")}
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
import traceback
|
| 216 |
+
return {"error": str(e), "trace": traceback.format_exc()}
|