Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,58 +1,116 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
from peft import PeftModel
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
-
Load
|
| 9 |
"""
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
def load_tokenizer(
|
| 24 |
"""
|
| 25 |
-
Load tokenizer for the
|
| 26 |
"""
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def generate_code(prompt, model, tokenizer, max_length=512, temperature=0.7):
|
| 30 |
"""
|
| 31 |
Generate code based on the prompt
|
| 32 |
"""
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# Initialize model and tokenizer
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
tokenizer = load_tokenizer(BASE_MODEL_NAME)
|
| 51 |
|
| 52 |
-
# Create Gradio interface
|
| 53 |
def gradio_generate(prompt, temperature, max_length):
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
| 56 |
demo = gr.Interface(
|
| 57 |
fn=gradio_generate,
|
| 58 |
inputs=[
|
|
@@ -76,9 +134,14 @@ demo = gr.Interface(
|
|
| 76 |
label="Max Length"
|
| 77 |
)
|
| 78 |
],
|
| 79 |
-
outputs=gr.Code(
|
| 80 |
-
title="Code Generation with LoRA",
|
| 81 |
-
description="Enter a prompt to generate code using
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
|
| 84 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 4 |
+
from peft import PeftModel
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
from huggingface_hub import snapshot_download
|
| 8 |
|
| 9 |
+
# Set up logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
def download_lora_weights():
|
| 14 |
+
"""Download LoRA weights from Hugging Face"""
|
| 15 |
+
return snapshot_download(
|
| 16 |
+
repo_id="EmTpro01/Llama-3.2-3B-peft",
|
| 17 |
+
allow_patterns=["adapter_config.json", "adapter_model.bin"],
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def load_model_with_lora():
|
| 21 |
"""
|
| 22 |
+
Load Llama model and merge it with LoRA adapter
|
| 23 |
"""
|
| 24 |
+
try:
|
| 25 |
+
# Configure quantization
|
| 26 |
+
bnb_config = BitsAndBytesConfig(
|
| 27 |
+
load_in_4bit=True,
|
| 28 |
+
bnb_4bit_use_double_quant=True,
|
| 29 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Load base model
|
| 33 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
"unsloth/llama-3.2-3b-bnb-4bit",
|
| 35 |
+
quantization_config=bnb_config,
|
| 36 |
+
device_map="auto",
|
| 37 |
+
trust_remote_code=True
|
| 38 |
+
)
|
| 39 |
+
logger.info("Successfully loaded base model")
|
| 40 |
+
|
| 41 |
+
# Download and load LoRA adapter
|
| 42 |
+
lora_path = download_lora_weights()
|
| 43 |
+
logger.info(f"Downloaded LoRA weights to: {lora_path}")
|
| 44 |
+
|
| 45 |
+
# Load and merge LoRA adapter
|
| 46 |
+
model = PeftModel.from_pretrained(base_model, lora_path)
|
| 47 |
+
logger.info("Successfully loaded LoRA adapter")
|
| 48 |
+
|
| 49 |
+
# For inference, we can merge the LoRA weights with the base model
|
| 50 |
+
model = model.merge_and_unload()
|
| 51 |
+
logger.info("Successfully merged LoRA weights with base model")
|
| 52 |
+
|
| 53 |
+
return model
|
| 54 |
+
|
| 55 |
+
except Exception as e:
|
| 56 |
+
logger.error(f"Error loading model: {str(e)}")
|
| 57 |
+
raise RuntimeError(f"Failed to load model: {str(e)}")
|
| 58 |
|
| 59 |
+
def load_tokenizer():
|
| 60 |
"""
|
| 61 |
+
Load tokenizer for the Llama model
|
| 62 |
"""
|
| 63 |
+
try:
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3.2-3b-bnb-4bit")
|
| 65 |
+
logger.info("Successfully loaded tokenizer")
|
| 66 |
+
return tokenizer
|
| 67 |
+
except Exception as e:
|
| 68 |
+
logger.error(f"Error loading tokenizer: {str(e)}")
|
| 69 |
+
raise RuntimeError(f"Failed to load tokenizer: {str(e)}")
|
| 70 |
|
| 71 |
def generate_code(prompt, model, tokenizer, max_length=512, temperature=0.7):
|
| 72 |
"""
|
| 73 |
Generate code based on the prompt
|
| 74 |
"""
|
| 75 |
+
try:
|
| 76 |
+
# Add any specific prompt template if needed
|
| 77 |
+
formatted_prompt = f"### Instruction: Write code for the following task:\n{prompt}\n\n### Response:"
|
| 78 |
+
|
| 79 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
| 80 |
+
|
| 81 |
+
outputs = model.generate(
|
| 82 |
+
**inputs,
|
| 83 |
+
max_length=max_length,
|
| 84 |
+
temperature=temperature,
|
| 85 |
+
do_sample=True,
|
| 86 |
+
top_p=0.95,
|
| 87 |
+
top_k=50,
|
| 88 |
+
repetition_penalty=1.1,
|
| 89 |
+
pad_token_id=tokenizer.eos_token_id
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 93 |
+
# Extract only the response part
|
| 94 |
+
response = generated_text.split("### Response:")[-1].strip()
|
| 95 |
+
return response
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.error(f"Error during code generation: {str(e)}")
|
| 98 |
+
return f"Error generating code: {str(e)}"
|
| 99 |
|
| 100 |
# Initialize model and tokenizer
|
| 101 |
+
logger.info("Starting model initialization...")
|
| 102 |
+
model = load_model_with_lora()
|
| 103 |
+
tokenizer = load_tokenizer()
|
| 104 |
+
logger.info("Model initialization completed successfully")
|
|
|
|
| 105 |
|
| 106 |
+
# Create Gradio interface with error handling
|
| 107 |
def gradio_generate(prompt, temperature, max_length):
|
| 108 |
+
try:
|
| 109 |
+
return generate_code(prompt, model, tokenizer, max_length, temperature)
|
| 110 |
+
except Exception as e:
|
| 111 |
+
return f"Error: {str(e)}"
|
| 112 |
|
| 113 |
+
# Create the Gradio interface
|
| 114 |
demo = gr.Interface(
|
| 115 |
fn=gradio_generate,
|
| 116 |
inputs=[
|
|
|
|
| 134 |
label="Max Length"
|
| 135 |
)
|
| 136 |
],
|
| 137 |
+
outputs=gr.Code(label="Generated Code"),
|
| 138 |
+
title="Llama Code Generation with LoRA",
|
| 139 |
+
description="Enter a prompt to generate code using Llama 3.2 3B model fine-tuned with LoRA",
|
| 140 |
+
examples=[
|
| 141 |
+
["Write a Python function to sort a list of numbers in ascending order"],
|
| 142 |
+
["Create a simple REST API using FastAPI that handles GET and POST requests"],
|
| 143 |
+
["Write a function to check if a string is a palindrome"]
|
| 144 |
+
]
|
| 145 |
)
|
| 146 |
|
| 147 |
if __name__ == "__main__":
|