File size: 34,635 Bytes
81bd15c
 
 
 
 
 
 
 
 
 
 
 
63b6bfe
81bd15c
e0ce03d
75a802d
688e85a
 
 
ff20737
 
 
688e85a
81bd15c
 
 
 
 
87962a2
1b8e3ce
81bd15c
9eb3e5c
7f325ac
81bd15c
 
 
 
 
 
f8b8c3b
 
 
 
 
 
 
 
 
 
81bd15c
f8b8c3b
 
 
 
 
 
 
 
 
 
24a6cc8
81bd15c
c657de6
 
 
c5e8a4b
c657de6
7f39c73
 
38e8e1e
7f39c73
 
87962a2
 
 
 
81b6b55
893e481
 
 
 
 
 
a59540b
81bd15c
 
6a6ba72
81bd15c
 
 
 
 
 
8ca088f
 
 
 
81bd15c
 
 
 
 
 
 
a59540b
6a6ba72
81bd15c
cd0a62e
 
4e9437a
cd0a62e
 
 
 
 
8ab6e43
4ab1fb7
cd0a62e
 
 
 
 
43d42f1
cd0a62e
 
 
 
 
 
 
 
 
 
 
77ad9dd
3a38675
 
 
5d7344e
4e9437a
5d7344e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9437a
5d7344e
4e9437a
7ef97d3
4e9437a
7ef97d3
4e9437a
 
7ef97d3
4e9437a
 
5d7344e
6920f1c
fb884c7
5d7344e
4e9437a
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
3a38675
 
a6af539
3623b94
8dbd8b3
 
 
 
3a38675
 
a6af539
3623b94
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
3a38675
 
8dbd8b3
 
27a7633
 
8dbd8b3
 
 
 
 
 
d823f25
27a7633
5d7344e
27a7633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6af539
 
cd0a62e
43d42f1
a59540b
a6af539
81bd15c
 
fda6a3f
f0d71dd
81bd15c
 
3b11880
81bd15c
 
 
 
3b11880
81bd15c
 
8ab6e43
81bd15c
ebd4480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bd15c
 
 
 
52ac9f1
 
 
a59540b
283e652
 
ec4bbe4
283e652
ec4bbe4
283e652
41623c5
de0bafe
fa90800
41623c5
 
 
d823f25
 
 
 
8ab6e43
283e652
1b8e3ce
fda6a3f
81bd15c
 
a59540b
a282bf5
 
cd0a62e
81bd15c
 
 
 
 
 
 
 
1d85a1a
81bd15c
 
 
 
 
 
 
 
 
cd0a62e
81bd15c
 
 
cd0a62e
81bd15c
 
eefe9fb
a59540b
81bd15c
cd0a62e
81bd15c
be6bf41
 
64f7080
 
d43450e
be6bf41
81b6b55
e2a10a5
81b6b55
81bd15c
6e952c6
5148ece
f0d71dd
dd4b164
81bd15c
9a7cc9f
 
6411a84
a328096
9a7cc9f
5b66738
0064bbc
81bd15c
c657de6
81bd15c
 
 
 
ce3d9c1
 
a74b98d
427c4da
 
81bd15c
 
 
 
 
 
911fb02
81b6b55
6e952c6
 
 
f8af1bf
6e952c6
0064bbc
6e952c6
 
6a6ba72
 
903f02e
c5e8a4b
ce3d9c1
5080edb
d43450e
df5a04e
f79c9cd
dd4b164
6a6ba72
d5fc5bb
12f50c1
6a6ba72
98caad5
6a6ba72
 
d5fc5bb
d43450e
 
 
 
 
 
 
34004ed
 
6a6ba72
 
 
 
 
d5fc5bb
9a7cc9f
6a6ba72
a59540b
 
6a6ba72
 
5e85662
6a6ba72
 
77ad9dd
6a6ba72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947a1d1
 
 
a733d29
c1bfeac
 
6a6ba72
df5a04e
fa90800
df5a04e
 
 
4e9437a
df5a04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a38675
 
df5a04e
 
 
 
d2350c1
df5a04e
 
 
 
2ef195c
df5a04e
a74b98d
 
df5a04e
5d7344e
df5a04e
 
27a7633
df5a04e
 
 
 
 
 
 
 
3a38675
df5a04e
 
 
 
 
 
 
b7b0eff
3a38675
5b66738
df5a04e
 
 
2ef195c
df5a04e
a74b98d
 
df5a04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b0eff
3a38675
5b66738
df5a04e
 
5339145
df5a04e
 
81bd15c
 
87962a2
c657de6
fa90800
2ef195c
 
 
fa90800
87962a2
 
ab71a5d
87962a2
893e481
 
 
87962a2
6a6ba72
 
87962a2
 
7f39c73
 
 
 
 
 
87962a2
fa90800
87962a2
4e9437a
cd0a62e
87962a2
 
 
 
8ab6e43
4ab1fb7
87962a2
 
 
 
 
43d42f1
87962a2
 
 
 
 
 
 
 
 
 
 
77ad9dd
0984390
 
87962a2
5148ece
87962a2
d2350c1
be6bf41
 
 
87962a2
81b6b55
4e08b5b
87962a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd0a62e
 
87962a2
911fb02
ebd4480
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import os

import gradio as gr
from gradio_imageslider import ImageSlider
import argparse
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
import numpy as np
import torch
from SUPIR.util import create_SUPIR_model, load_QF_ckpt
from PIL import Image
import einops
import copy
import math
import time
import random
import spaces
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")

parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True)#False
parser.add_argument("--use_image_slider", action='store_true', default=False)#False
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)#False
parser.add_argument("--use_tile_vae", action='store_true', default=True)#False
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()
use_llava = not args.no_llava

if torch.cuda.device_count() > 0:
    if torch.cuda.device_count() >= 2:
        SUPIR_device = 'cuda:0'
        LLaVA_device = 'cuda:1'
    elif torch.cuda.device_count() == 1:
        SUPIR_device = 'cuda:0'
        LLaVA_device = 'cuda:0'
    else:
        SUPIR_device = 'cpu'
        LLaVA_device = 'cpu'

    # load SUPIR
    model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
    if args.loading_half_params:
        model = model.half()
    if args.use_tile_vae:
        model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
    model = model.to(SUPIR_device)
    model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
    model.current_model = 'v0-Q'
    ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
    llava_agent = None

def check_upload(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")
    return gr.update(visible = True)

def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, 2147483647)
    return seed

def check(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")

@spaces.GPU(duration=420)
def stage1_process(
    input_image,
    gamma_correction,
    diff_dtype,
    ae_dtype
):
    print('stage1_process ==>>')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None
    torch.cuda.set_device(SUPIR_device)
    LQ = HWC3(input_image)
    LQ = fix_resize(LQ, 512)
    # stage1
    LQ = np.array(LQ) / 255 * 2 - 1
    LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    LQ = model.batchify_denoise(LQ, is_stage1=True)
    LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
    # gamma correction
    LQ = LQ / 255.0
    LQ = np.power(LQ, gamma_correction)
    LQ *= 255.0
    LQ = LQ.round().clip(0, 255).astype(np.uint8)
    print('<<== stage1_process')
    return LQ, gr.update(visible = True)

def stage2_process(
    noisy_image,
    rotation,
    denoise_image,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    randomize_seed,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    output_format,
    allocation
):
    print("noisy_image: " + str(noisy_image))
    print("rotation: " + str(rotation))
    print("denoise_image: " + str(denoise_image))
    print("prompt: " + str(prompt))
    print("a_prompt: " + str(a_prompt))
    print("n_prompt: " + str(n_prompt))
    print("num_samples: " + str(num_samples))
    print("min_size: " + str(min_size))
    print("downscale: " + str(downscale))
    print("upscale: " + str(upscale))
    print("edm_steps: " + str(edm_steps))
    print("s_stage1: " + str(s_stage1))
    print("s_stage2: " + str(s_stage2))
    print("s_cfg: " + str(s_cfg))
    print("randomize_seed: " + str(randomize_seed))
    print("seed: " + str(seed))
    print("s_churn: " + str(s_churn))
    print("s_noise: " + str(s_noise))
    print("color_fix_type: " + str(color_fix_type))
    print("diff_dtype: " + str(diff_dtype))
    print("ae_dtype: " + str(ae_dtype))
    print("gamma_correction: " + str(gamma_correction))
    print("linear_CFG: " + str(linear_CFG))
    print("linear_s_stage2: " + str(linear_s_stage2))
    print("spt_linear_CFG: " + str(spt_linear_CFG))
    print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
    print("model_select: " + str(model_select))
    print("output_format: " + str(output_format))
    print("GPU time allocation: " + str(allocation) + " min")

    if output_format == "input":
        if noisy_image is None:
            output_format = "png"
        else:
            output_format = noisy_image.format

    if prompt is None:
        prompt = ""

    if a_prompt is None:
        a_prompt = ""

    if n_prompt is None:
        n_prompt = ""

    if prompt != "" and a_prompt != "":
        a_prompt = prompt + ", " + a_prompt
    else:
        a_prompt = prompt + a_prompt
    print("Final prompt: " + str(a_prompt))

    noisy_image = noisy_image if denoise_image is None else denoise_image

    if rotation == 90:
        noisy_image = np.array(list(zip(*noisy_image[::-1])))
    elif rotation == 180:
        noisy_image = np.array(list(zip(*noisy_image[::-1])))
        noisy_image = np.array(list(zip(*noisy_image[::-1])))
    elif rotation == -90:
        noisy_image = np.array(list(zip(*noisy_image))[::-1])

    if 1 < downscale:
        input_height, input_width, input_channel = noisy_image.shape
        noisy_image = np.array(Image.fromarray(noisy_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))

    # Allocation
    if allocation == 1:
        return restore_in_1min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 2:
        return restore_in_2min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 3:
        return restore_in_3min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 4:
        return restore_in_4min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 5:
        return restore_in_5min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 7:
        return restore_in_7min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 8:
        return restore_in_8min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 9:
        return restore_in_9min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 10:
        return restore_in_10min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    else:
        return restore_in_6min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )

@spaces.GPU(duration=60)
def restore_in_1min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=120)
def restore_in_2min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=180)
def restore_in_3min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=240)
def restore_in_4min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=300)
def restore_in_5min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=360)
def restore_in_6min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=420)
def restore_in_7min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=480)
def restore_in_8min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=540)
def restore_in_9min(*args, **kwargs):
    return restore(*args, **kwargs)

@spaces.GPU(duration=599)
def restore_in_10min(*args, **kwargs):
    return restore(*args, **kwargs)

def restore(
    input_image,
    denoise_image,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    randomize_seed,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    output_format,
    allocation
):
    start = time.time()
    print('stage2_process ==>>')

    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return [input_image] * 2, [input_image], None, None
    torch.cuda.set_device(SUPIR_device)

    if model_select != model.current_model:
        print('load ' + model_select)
        if model_select == 'v0-Q':
            model.load_state_dict(ckpt_Q, strict=False)
        elif model_select == 'v0-F':
            model.load_state_dict(ckpt_F, strict=False)
        model.current_model = model_select
    input_image = HWC3(input_image)
    input_image = upscale_image(input_image, upscale, unit_resolution=32,
                                min_size=min_size)

    LQ = np.array(input_image) / 255.0
    LQ = np.power(LQ, gamma_correction)
    LQ *= 255.0
    LQ = LQ.round().clip(0, 255).astype(np.uint8)
    LQ = LQ / 255 * 2 - 1
    LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
    if use_llava:
        captions = [prompt]
    else:
        captions = ['']

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
                                    s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
                                    num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
                                    use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
                                    cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)

    x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
        0, 255).astype(np.uint8)
    results = [x_samples[i] for i in range(num_samples)]

    # All the results have the same size
    result_height, result_width, result_channel = np.array(results[0]).shape

    print('<<== stage2_process')
    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
    "If you don't get the image you wanted, add more details in the « Image description ». " + \
    "Wait " + str(allocation) + " min before a new run to avoid quota penalty or use another computer. " + \
    "The image(s) has(ve) been generated in " + \
    ((str(hours) + " h, ") if hours != 0 else "") + \
    ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
    str(secondes) + " sec. " + \
    "The new image resolution is " + str(result_width) + \
    " pixels large and " + str(result_height) + \
    " pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
    print(information)

    # Only one image can be shown in the slider
    return [input_image] + [results[0]], gr.update(format = output_format, value = results), gr.update(value = information, visible = True)

def load_and_reset(param_setting):
    print('load_and_reset ==>>')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None, None, None, None, None, None, None, None, None, None, None, None, None
    edm_steps = default_setting.edm_steps
    s_stage2 = 1.0
    s_stage1 = -1.0
    s_churn = 5
    s_noise = 1.003
    a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
               'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
               'detailing, hyper sharpness, perfect without deformations.'
    n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
               '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
               'signature, jpeg artifacts, deformed, lowres, over-smooth'
    color_fix_type = 'Wavelet'
    spt_linear_s_stage2 = 0.0
    linear_s_stage2 = False
    linear_CFG = True
    if param_setting == "Quality":
        s_cfg = default_setting.s_cfg_Quality
        spt_linear_CFG = default_setting.spt_linear_CFG_Quality
        model_select = "v0-Q"
    elif param_setting == "Fidelity":
        s_cfg = default_setting.s_cfg_Fidelity
        spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
        model_select = "v0-F"
    else:
        raise NotImplementedError
    gr.Info('The parameters are reset.')
    print('<<== load_and_reset')
    return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
        linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select

def log_information(result_gallery):
    print('log_information')
    if result_gallery is not None:
        for i, result in enumerate(result_gallery):
            print(result[0])

def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
    print('on_select_result')
    return [result_slider[0], result_gallery[evt.index][0]]

title_html = """
    <h1><center>SUPIR</center></h1>
    <big><center>Upscale your images up to x8 freely, without account, without watermark and download it</center></big>
    <center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
    
    <p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
    It is still a research project under tested and is not yet a stable commercial product.
    The content added by SUPIR is <b><u>imagination, not real-world information</u></b>.
    SUPIR is for beauty and illustration only.
    Most of the processes only last few minutes.
    This demo can handle huge images but the process will be aborted if it lasts more than 8 min.
    Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
    
    <p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a> &emsp; <a href="http://supir.xpixel.group/">Project Page</a> &emsp; <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
    """


claim_md = """
## **Piracy**
The images are not stored but the logs are saved during a month.
## **How to get SUPIR**
You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU.
You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai).
## **Terms of use**
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
## **License**
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
"""

# Gradio interface
with gr.Blocks() as interface:
    if torch.cuda.device_count() == 0:
        with gr.Row():
            gr.HTML("""
    <p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
    
    You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
    </big></big></big></p>
    """)
    gr.HTML(title_html)

    input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.gif, *.bmp)", show_label=True, type="numpy", height=600, elem_id="image-input")
    rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
    with gr.Group():
        prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; I advise you to write in English because other languages may not be handled", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
        prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
        upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
        allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min", 8]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=6, interactive=True)
        output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)

    with gr.Accordion("Pre-denoising (optional)", open=False):
        gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
        denoise_button = gr.Button(value="Pre-denoise")
        denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", sources=[], height=600, elem_id="image-s1")
        denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)

    with gr.Accordion("Advanced options", open=False):
        a_prompt = gr.Textbox(label="Additional image description",
                              info="Completes the main image description",
                              value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
                                    'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
                                    'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
                                    'hyper sharpness, perfect without deformations.',
                              lines=3)
        n_prompt = gr.Textbox(label="Anti image description",
                              info="Disambiguate by listing what the image does NOT represent",
                              value='painting, oil painting, illustration, drawing, art, sketch, anime, '
                                    'cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, '
                                    'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
                                    'deformed, lowres, over-smooth',
                              lines=3)
        edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
        num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
                                , value=1, step=1)
        min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
        downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
        with gr.Row():
            with gr.Column():
                model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
                                        interactive=True)
            with gr.Column():
                color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
                                          interactive=True)
        s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
                          value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
        s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
        s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
        s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
        s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
        with gr.Row():
            with gr.Column():
                linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
                spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
                                                maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
            with gr.Column():
                linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
                spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
                                                maximum=1., value=0., step=0.05)
            with gr.Column():
                diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
                                      interactive=True)
            with gr.Column():
                ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
                                    interactive=True)
        randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
        seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
        with gr.Group():
            param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
            restart_button = gr.Button(value="Apply presetting")

    with gr.Group():
        diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id="process_button")

        restore_information = gr.HTML(value="Restart the process to get another result.", visible = False)
        result_slider = ImageSlider(label='Comparator', show_label=False, elem_id="slider1", show_download_button = False)
        result_gallery = gr.Gallery(label='Downloadable results', show_label=True, elem_id="gallery1")

    gr.Examples(
        run_on_click = True,
        fn = stage2_process,
	    inputs = [
            input_image,
            rotation,
            denoise_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            randomize_seed,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            output_format,
            allocation
        ],
	    outputs = [
            result_slider,
            result_gallery,
            restore_information
        ],
        examples = [
                [
                    "./Examples/Example1.png",
                    0,
                    None,
                    "Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
                    "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
                    "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
                    2,
                    1024,
                    1,
                    8,
                    200,
                    -1,
                    1,
                    7.5,
                    False,
                    42,
                    5,
                    1.003,
                    "AdaIn",
                    "fp16",
                    "bf16",
                    1.0,
                    True,
                    4,
                    False,
                    0.,
                    "v0-Q",
                    "png",
                    5
                ],
                [
                    "./Examples/Example2.jpeg",
                    0,
                    None,
                    "The head of a tabby cat, in a house, photorealistic, 8k, extremely detailled",
                    "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
                    "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
                    1,
                    1024,
                    1,
                    1,
                    200,
                    -1,
                    1,
                    7.5,
                    False,
                    42,
                    5,
                    1.003,
                    "Wavelet",
                    "fp16",
                    "bf16",
                    1.0,
                    True,
                    4,
                    False,
                    0.,
                    "v0-Q",
                    "png",
                    4
                ],
            ],
        cache_examples = False,
    )

    with gr.Row():
        gr.Markdown(claim_md)
    
    input_image.upload(fn = check_upload, inputs = [
        input_image
    ], outputs = [
        rotation
    ], queue = False, show_progress = False)

    denoise_button.click(fn = check, inputs = [
        input_image
    ], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
        input_image,
        gamma_correction,
        diff_dtype,
        ae_dtype
    ], outputs=[
        denoise_image,
        denoise_information
    ])

    diffusion_button.click(fn = update_seed, inputs = [
        randomize_seed,
        seed
    ], outputs = [
        seed
    ], queue = False, show_progress = False).then(fn = check, inputs = [
        input_image
    ], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
        input_image,
        rotation,
        denoise_image,
        prompt,
        a_prompt,
        n_prompt,
        num_samples,
        min_size,
        downscale,
        upscale,
        edm_steps,
        s_stage1,
        s_stage2,
        s_cfg,
        randomize_seed,
        seed,
        s_churn,
        s_noise,
        color_fix_type,
        diff_dtype,
        ae_dtype,
        gamma_correction,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select,
        output_format,
        allocation
    ], outputs = [
        result_slider,
        result_gallery,
        restore_information
    ]).success(fn = log_information, inputs = [
        result_gallery
    ], outputs = [], queue = False, show_progress = False)

    result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)

    restart_button.click(fn = load_and_reset, inputs = [
        param_setting
    ], outputs = [
        edm_steps,
        s_cfg,
        s_stage2,
        s_stage1,
        s_churn,
        s_noise,
        a_prompt,
        n_prompt,
        color_fix_type,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select
    ])
        
    interface.queue(10).launch()