Spaces:
Running
on
T4
Running
on
T4
Create retriever.py
Browse files- auditqa/retriever.py +57 -0
auditqa/retriever.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from qdrant_client.http import models as rest
|
| 2 |
+
from auditqa.process_chunks import getconfig
|
| 3 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 4 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 5 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
model_config = getconfig("model_params.cfg")
|
| 9 |
+
|
| 10 |
+
def create_filter(reports:list = [],sources:str =None,
|
| 11 |
+
subtype:str =None,year:str =None):
|
| 12 |
+
if len(reports) == 0:
|
| 13 |
+
print("defining filter for:{}:{}:{}".format(sources,subtype,year))
|
| 14 |
+
filter=rest.Filter(
|
| 15 |
+
must=[rest.FieldCondition(
|
| 16 |
+
key="metadata.source",
|
| 17 |
+
match=rest.MatchValue(value=sources)
|
| 18 |
+
),
|
| 19 |
+
rest.FieldCondition(
|
| 20 |
+
key="metadata.subtype",
|
| 21 |
+
match=rest.MatchValue(value=subtype)
|
| 22 |
+
),
|
| 23 |
+
rest.FieldCondition(
|
| 24 |
+
key="metadata.year",
|
| 25 |
+
match=rest.MatchAny(any=year)
|
| 26 |
+
),])
|
| 27 |
+
else:
|
| 28 |
+
print("defining filter for allreports:",reports)
|
| 29 |
+
filter=rest.Filter(
|
| 30 |
+
must=[
|
| 31 |
+
rest.FieldCondition(
|
| 32 |
+
key="metadata.filename",
|
| 33 |
+
match=rest.MatchAny(any=reports)
|
| 34 |
+
)])
|
| 35 |
+
|
| 36 |
+
return filter
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_context(vectorstore,query,reports,sources,subtype,year):
|
| 40 |
+
# create metadata filter
|
| 41 |
+
filter = create_filter(reports=reports,sources=sources,subtype=subtype,year=year)
|
| 42 |
+
|
| 43 |
+
# getting context
|
| 44 |
+
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold",
|
| 45 |
+
search_kwargs={"score_threshold": 0.6,
|
| 46 |
+
"k": int(model_config.get('retriever','TOP_K')),
|
| 47 |
+
"filter":filter})
|
| 48 |
+
# re-ranking the retrieved results
|
| 49 |
+
model = HuggingFaceCrossEncoder(model_name=model_config.get('ranker','MODEL'))
|
| 50 |
+
compressor = CrossEncoderReranker(model=model, top_n=int(model_config.get('ranker','TOP_K')))
|
| 51 |
+
compression_retriever = ContextualCompressionRetriever(
|
| 52 |
+
base_compressor=compressor, base_retriever=retriever
|
| 53 |
+
)
|
| 54 |
+
context_retrieved = compression_retriever.invoke(query)
|
| 55 |
+
print(f"retrieved paragraphs:{len(context_retrieved)}")
|
| 56 |
+
|
| 57 |
+
return context_retrieved
|