optz the data loading
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from datasets import load_dataset
|
|
| 4 |
import jiwer
|
| 5 |
import numpy as np
|
| 6 |
from functools import lru_cache
|
|
|
|
| 7 |
|
| 8 |
# Cache the dataset loading to avoid reloading on refresh
|
| 9 |
@lru_cache(maxsize=1)
|
|
@@ -15,89 +16,151 @@ def calculate_wer(examples):
|
|
| 15 |
if not examples:
|
| 16 |
return 0.0
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
return np.nan
|
| 25 |
-
|
| 26 |
-
# Unzip the pairs in one operation
|
| 27 |
-
references, hypotheses = zip(*valid_pairs) if valid_pairs else ([], [])
|
| 28 |
-
|
| 29 |
-
# Calculate WER
|
| 30 |
-
return jiwer.wer(references, hypotheses)
|
| 31 |
|
| 32 |
# Get WER metrics by source and split
|
| 33 |
def get_wer_metrics(dataset):
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# Group examples by source in a single pass for each split
|
| 39 |
-
for ex in dataset["train"]:
|
| 40 |
-
source = ex["source"]
|
| 41 |
-
if source not in train_by_source:
|
| 42 |
-
train_by_source[source] = []
|
| 43 |
-
train_by_source[source].append(ex)
|
| 44 |
-
|
| 45 |
-
for ex in dataset["test"]:
|
| 46 |
-
source = ex["source"]
|
| 47 |
-
if source not in test_by_source:
|
| 48 |
-
test_by_source[source] = []
|
| 49 |
-
test_by_source[source].append(ex)
|
| 50 |
-
|
| 51 |
-
# Get all unique sources
|
| 52 |
-
all_sources = sorted(set(train_by_source.keys()) | set(test_by_source.keys()))
|
| 53 |
-
|
| 54 |
-
# Calculate metrics for each source
|
| 55 |
-
results = []
|
| 56 |
-
for source in all_sources:
|
| 57 |
-
train_examples = train_by_source.get(source, [])
|
| 58 |
-
test_examples = test_by_source.get(source, [])
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Format the dataframe for display
|
| 89 |
def format_dataframe(df):
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
# Main function to create the leaderboard
|
| 103 |
def create_leaderboard():
|
|
@@ -106,7 +169,9 @@ def create_leaderboard():
|
|
| 106 |
metrics_df = get_wer_metrics(dataset)
|
| 107 |
return format_dataframe(metrics_df)
|
| 108 |
except Exception as e:
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# Create the Gradio interface
|
| 112 |
with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
|
@@ -117,9 +182,28 @@ with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
|
| 117 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
| 118 |
|
| 119 |
with gr.Row():
|
| 120 |
-
|
| 121 |
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
| 125 |
demo.launch()
|
|
|
|
| 4 |
import jiwer
|
| 5 |
import numpy as np
|
| 6 |
from functools import lru_cache
|
| 7 |
+
import traceback
|
| 8 |
|
| 9 |
# Cache the dataset loading to avoid reloading on refresh
|
| 10 |
@lru_cache(maxsize=1)
|
|
|
|
| 16 |
if not examples:
|
| 17 |
return 0.0
|
| 18 |
|
| 19 |
+
try:
|
| 20 |
+
# Filter valid examples in a single pass
|
| 21 |
+
valid_pairs = []
|
| 22 |
+
for ex in examples:
|
| 23 |
+
try:
|
| 24 |
+
transcription = ex.get("transcription", "")
|
| 25 |
+
input1 = ex.get("input1", "")
|
| 26 |
+
|
| 27 |
+
# Only add valid pairs
|
| 28 |
+
if transcription and input1:
|
| 29 |
+
# Limit text length to avoid potential issues
|
| 30 |
+
transcription = transcription.strip()[:1000] # Limit to 1000 chars
|
| 31 |
+
input1 = input1.strip()[:1000]
|
| 32 |
+
valid_pairs.append((transcription, input1))
|
| 33 |
+
except Exception as ex_error:
|
| 34 |
+
# Skip problematic examples but continue processing
|
| 35 |
+
print(f"Error processing example: {str(ex_error)}")
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
if not valid_pairs:
|
| 39 |
+
return np.nan
|
| 40 |
+
|
| 41 |
+
# Unzip the pairs in one operation
|
| 42 |
+
references, hypotheses = zip(*valid_pairs) if valid_pairs else ([], [])
|
| 43 |
+
|
| 44 |
+
# Calculate WER
|
| 45 |
+
return jiwer.wer(references, hypotheses)
|
| 46 |
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Error in calculate_wer: {str(e)}")
|
| 49 |
+
print(traceback.format_exc())
|
| 50 |
return np.nan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Get WER metrics by source and split
|
| 53 |
def get_wer_metrics(dataset):
|
| 54 |
+
try:
|
| 55 |
+
# Pre-process the data to avoid repeated filtering
|
| 56 |
+
train_by_source = {}
|
| 57 |
+
test_by_source = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Group examples by source in a single pass for each split
|
| 60 |
+
for ex in dataset["train"]:
|
| 61 |
+
try:
|
| 62 |
+
source = ex.get("source", "unknown")
|
| 63 |
+
if source not in train_by_source:
|
| 64 |
+
train_by_source[source] = []
|
| 65 |
+
train_by_source[source].append(ex)
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Error processing train example: {str(e)}")
|
| 68 |
+
continue
|
| 69 |
|
| 70 |
+
for ex in dataset["test"]:
|
| 71 |
+
try:
|
| 72 |
+
source = ex.get("source", "unknown")
|
| 73 |
+
if source not in test_by_source:
|
| 74 |
+
test_by_source[source] = []
|
| 75 |
+
test_by_source[source].append(ex)
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"Error processing test example: {str(e)}")
|
| 78 |
+
continue
|
| 79 |
|
| 80 |
+
# Get all unique sources
|
| 81 |
+
all_sources = sorted(set(train_by_source.keys()) | set(test_by_source.keys()))
|
| 82 |
+
|
| 83 |
+
# Calculate metrics for each source
|
| 84 |
+
results = []
|
| 85 |
+
for source in all_sources:
|
| 86 |
+
try:
|
| 87 |
+
train_examples = train_by_source.get(source, [])
|
| 88 |
+
test_examples = test_by_source.get(source, [])
|
| 89 |
+
|
| 90 |
+
train_count = len(train_examples)
|
| 91 |
+
test_count = len(test_examples)
|
| 92 |
+
|
| 93 |
+
train_wer = calculate_wer(train_examples) if train_count > 0 else np.nan
|
| 94 |
+
test_wer = calculate_wer(test_examples) if test_count > 0 else np.nan
|
| 95 |
+
|
| 96 |
+
results.append({
|
| 97 |
+
"Source": source,
|
| 98 |
+
"Train Count": train_count,
|
| 99 |
+
"Train WER": train_wer,
|
| 100 |
+
"Test Count": test_count,
|
| 101 |
+
"Test WER": test_wer
|
| 102 |
+
})
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"Error processing source {source}: {str(e)}")
|
| 105 |
+
results.append({
|
| 106 |
+
"Source": source,
|
| 107 |
+
"Train Count": 0,
|
| 108 |
+
"Train WER": np.nan,
|
| 109 |
+
"Test Count": 0,
|
| 110 |
+
"Test WER": np.nan
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
# Calculate overall metrics once
|
| 114 |
+
try:
|
| 115 |
+
train_wer = calculate_wer(dataset["train"])
|
| 116 |
+
test_wer = calculate_wer(dataset["test"])
|
| 117 |
+
|
| 118 |
+
results.append({
|
| 119 |
+
"Source": "OVERALL",
|
| 120 |
+
"Train Count": len(dataset["train"]),
|
| 121 |
+
"Train WER": train_wer,
|
| 122 |
+
"Test Count": len(dataset["test"]),
|
| 123 |
+
"Test WER": test_wer
|
| 124 |
+
})
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"Error calculating overall metrics: {str(e)}")
|
| 127 |
+
results.append({
|
| 128 |
+
"Source": "OVERALL",
|
| 129 |
+
"Train Count": len(dataset["train"]),
|
| 130 |
+
"Train WER": np.nan,
|
| 131 |
+
"Test Count": len(dataset["test"]),
|
| 132 |
+
"Test WER": np.nan
|
| 133 |
+
})
|
| 134 |
+
|
| 135 |
+
return pd.DataFrame(results)
|
| 136 |
|
| 137 |
+
except Exception as e:
|
| 138 |
+
print(f"Error in get_wer_metrics: {str(e)}")
|
| 139 |
+
print(traceback.format_exc())
|
| 140 |
+
return pd.DataFrame([{"Error": str(e)}])
|
| 141 |
|
| 142 |
# Format the dataframe for display
|
| 143 |
def format_dataframe(df):
|
| 144 |
+
try:
|
| 145 |
+
# Use vectorized operations instead of apply
|
| 146 |
+
df = df.copy()
|
| 147 |
+
|
| 148 |
+
if "Train WER" in df.columns:
|
| 149 |
+
mask = df["Train WER"].notna()
|
| 150 |
+
df.loc[mask, "Train WER"] = df.loc[mask, "Train WER"].map(lambda x: f"{x:.4f}")
|
| 151 |
+
df.loc[~mask, "Train WER"] = "N/A"
|
| 152 |
+
|
| 153 |
+
if "Test WER" in df.columns:
|
| 154 |
+
mask = df["Test WER"].notna()
|
| 155 |
+
df.loc[mask, "Test WER"] = df.loc[mask, "Test WER"].map(lambda x: f"{x:.4f}")
|
| 156 |
+
df.loc[~mask, "Test WER"] = "N/A"
|
| 157 |
+
|
| 158 |
+
return df
|
| 159 |
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"Error in format_dataframe: {str(e)}")
|
| 162 |
+
print(traceback.format_exc())
|
| 163 |
+
return pd.DataFrame([{"Error": str(e)}])
|
| 164 |
|
| 165 |
# Main function to create the leaderboard
|
| 166 |
def create_leaderboard():
|
|
|
|
| 169 |
metrics_df = get_wer_metrics(dataset)
|
| 170 |
return format_dataframe(metrics_df)
|
| 171 |
except Exception as e:
|
| 172 |
+
error_msg = f"Error creating leaderboard: {str(e)}\n{traceback.format_exc()}"
|
| 173 |
+
print(error_msg)
|
| 174 |
+
return pd.DataFrame([{"Error": error_msg}])
|
| 175 |
|
| 176 |
# Create the Gradio interface
|
| 177 |
with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
|
|
|
| 182 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
| 183 |
|
| 184 |
with gr.Row():
|
| 185 |
+
error_output = gr.Textbox(label="Errors (if any)")
|
| 186 |
|
| 187 |
+
with gr.Row():
|
| 188 |
+
try:
|
| 189 |
+
initial_df = create_leaderboard()
|
| 190 |
+
leaderboard = gr.DataFrame(initial_df)
|
| 191 |
+
except Exception as e:
|
| 192 |
+
error_msg = f"Error initializing leaderboard: {str(e)}\n{traceback.format_exc()}"
|
| 193 |
+
print(error_msg)
|
| 194 |
+
error_output.update(value=error_msg)
|
| 195 |
+
leaderboard = gr.DataFrame(pd.DataFrame([{"Error": error_msg}]))
|
| 196 |
+
|
| 197 |
+
def refresh_and_report():
|
| 198 |
+
try:
|
| 199 |
+
df = create_leaderboard()
|
| 200 |
+
return df, ""
|
| 201 |
+
except Exception as e:
|
| 202 |
+
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
|
| 203 |
+
print(error_msg)
|
| 204 |
+
return pd.DataFrame([{"Error": error_msg}]), error_msg
|
| 205 |
+
|
| 206 |
+
refresh_btn.click(refresh_and_report, outputs=[leaderboard, error_output])
|
| 207 |
|
| 208 |
if __name__ == "__main__":
|
| 209 |
demo.launch()
|