optz the data loading
Browse files
app.py
CHANGED
|
@@ -37,114 +37,107 @@ def preprocess_text(text):
|
|
| 37 |
text = re.sub(r'\s+', ' ', text).strip()
|
| 38 |
return text
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Calculate WER for a group of examples
|
| 41 |
def calculate_wer(examples):
|
| 42 |
if not examples:
|
| 43 |
return 0.0
|
| 44 |
|
| 45 |
try:
|
| 46 |
-
#
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
example = examples[0]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
possible_hypothesis_fields = ["input1", "hypothesis", "asr_output", "source_text"]
|
| 55 |
-
|
| 56 |
-
for field in possible_reference_fields:
|
| 57 |
-
if field in example:
|
| 58 |
-
print(f"Reference field '{field}' found with value: {str(example[field])[:100]}...")
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
try:
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
hypothesis = ex["hypothesis"]
|
| 80 |
-
else:
|
| 81 |
-
continue # Skip this example if we can't find matching fields
|
| 82 |
|
| 83 |
-
#
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
if reference and hypothesis:
|
| 89 |
-
|
|
|
|
| 90 |
except Exception as ex_error:
|
| 91 |
print(f"Error processing example: {str(ex_error)}")
|
| 92 |
continue
|
| 93 |
|
| 94 |
-
|
|
|
|
| 95 |
print("No valid pairs found for WER calculation")
|
| 96 |
return np.nan
|
| 97 |
|
| 98 |
-
|
| 99 |
-
print(f"
|
| 100 |
-
|
| 101 |
-
print(f"Hypothesis: '{valid_pairs[0][1]}'")
|
| 102 |
-
print(f"Total valid pairs: {len(valid_pairs)}")
|
| 103 |
-
|
| 104 |
-
# Make sure we have enough valid examples
|
| 105 |
-
if len(valid_pairs) < 5:
|
| 106 |
-
print("WARNING: Very few valid pairs for WER calculation")
|
| 107 |
-
if len(valid_pairs) < 2:
|
| 108 |
-
print("Not enough data for reliable WER calculation")
|
| 109 |
-
return np.nan
|
| 110 |
-
|
| 111 |
-
# Unzip the pairs
|
| 112 |
-
references, hypotheses = zip(*valid_pairs)
|
| 113 |
-
|
| 114 |
-
# Calculate WER with additional transforms
|
| 115 |
-
try:
|
| 116 |
-
# Set up transformation pipeline for jiwer
|
| 117 |
-
transformation = jiwer.Compose([
|
| 118 |
-
jiwer.ToLowerCase(),
|
| 119 |
-
jiwer.RemoveMultipleSpaces(),
|
| 120 |
-
jiwer.Strip(),
|
| 121 |
-
jiwer.RemovePunctuation(),
|
| 122 |
-
jiwer.ReduceToListOfWords()
|
| 123 |
-
])
|
| 124 |
-
|
| 125 |
-
# Calculate WER with transformations
|
| 126 |
-
wer = jiwer.wer(
|
| 127 |
-
references,
|
| 128 |
-
hypotheses,
|
| 129 |
-
truth_transform=transformation,
|
| 130 |
-
hypothesis_transform=transformation
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
print(f"Successfully calculated WER: {wer}")
|
| 134 |
-
return wer
|
| 135 |
-
except Exception as wer_error:
|
| 136 |
-
print(f"Error calculating WER with jiwer: {str(wer_error)}")
|
| 137 |
-
|
| 138 |
-
# Fallback: Calculate character error rate manually for one sample
|
| 139 |
-
try:
|
| 140 |
-
if valid_pairs:
|
| 141 |
-
ref = valid_pairs[0][0]
|
| 142 |
-
hyp = valid_pairs[0][1]
|
| 143 |
-
distance = jiwer.transforms.cer(ref, hyp)
|
| 144 |
-
print(f"Fallback CER for first sample: {distance}")
|
| 145 |
-
return np.nan
|
| 146 |
-
except:
|
| 147 |
-
return np.nan
|
| 148 |
|
| 149 |
except Exception as e:
|
| 150 |
print(f"Error in calculate_wer: {str(e)}")
|
|
@@ -163,14 +156,14 @@ def get_wer_metrics(dataset):
|
|
| 163 |
examples_by_source = {}
|
| 164 |
|
| 165 |
# Process all examples
|
| 166 |
-
for ex in dataset:
|
| 167 |
try:
|
| 168 |
source = ex.get("source", "unknown")
|
| 169 |
if source not in examples_by_source:
|
| 170 |
examples_by_source[source] = []
|
| 171 |
examples_by_source[source].append(ex)
|
| 172 |
except Exception as e:
|
| 173 |
-
print(f"Error processing example: {str(e)}")
|
| 174 |
continue
|
| 175 |
|
| 176 |
# Get all unique sources
|
|
@@ -186,7 +179,7 @@ def get_wer_metrics(dataset):
|
|
| 186 |
|
| 187 |
if count > 0:
|
| 188 |
print(f"\nCalculating WER for source {source} with {count} examples")
|
| 189 |
-
wer = calculate_wer(examples
|
| 190 |
else:
|
| 191 |
wer = np.nan
|
| 192 |
|
|
@@ -207,9 +200,10 @@ def get_wer_metrics(dataset):
|
|
| 207 |
try:
|
| 208 |
total_count = len(dataset)
|
| 209 |
print(f"\nCalculating overall WER with a sample of examples")
|
| 210 |
-
#
|
| 211 |
-
sample_size = min(
|
| 212 |
-
|
|
|
|
| 213 |
|
| 214 |
results.append({
|
| 215 |
"Source": "OVERALL",
|
|
@@ -218,6 +212,7 @@ def get_wer_metrics(dataset):
|
|
| 218 |
})
|
| 219 |
except Exception as e:
|
| 220 |
print(f"Error calculating overall metrics: {str(e)}")
|
|
|
|
| 221 |
results.append({
|
| 222 |
"Source": "OVERALL",
|
| 223 |
"Count": len(dataset),
|
|
@@ -294,4 +289,4 @@ with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
|
|
| 294 |
refresh_btn.click(refresh_and_report, outputs=[leaderboard, error_output])
|
| 295 |
|
| 296 |
if __name__ == "__main__":
|
| 297 |
-
demo.launch()
|
|
|
|
| 37 |
text = re.sub(r'\s+', ' ', text).strip()
|
| 38 |
return text
|
| 39 |
|
| 40 |
+
# Simple WER calculation
|
| 41 |
+
def calculate_simple_wer(reference, hypothesis):
|
| 42 |
+
"""Calculate WER using a simple word-based approach"""
|
| 43 |
+
if not reference or not hypothesis:
|
| 44 |
+
return 1.0 # Maximum error if either is empty
|
| 45 |
+
|
| 46 |
+
# Split into words
|
| 47 |
+
ref_words = reference.split()
|
| 48 |
+
hyp_words = hypothesis.split()
|
| 49 |
+
|
| 50 |
+
# Levenshtein distance at the word level
|
| 51 |
+
# This is a simple implementation and may not be as accurate as jiwer
|
| 52 |
+
from jiwer.measures import _levenshtein_distance
|
| 53 |
+
distance = _levenshtein_distance(ref_words, hyp_words)
|
| 54 |
+
|
| 55 |
+
# WER calculation
|
| 56 |
+
if len(ref_words) == 0:
|
| 57 |
+
return 1.0
|
| 58 |
+
return float(distance) / float(len(ref_words))
|
| 59 |
+
|
| 60 |
# Calculate WER for a group of examples
|
| 61 |
def calculate_wer(examples):
|
| 62 |
if not examples:
|
| 63 |
return 0.0
|
| 64 |
|
| 65 |
try:
|
| 66 |
+
# Check if examples is a Dataset or a list
|
| 67 |
+
is_dataset = hasattr(examples, 'features')
|
| 68 |
+
|
| 69 |
+
# Get the first example for inspection
|
| 70 |
+
if is_dataset and len(examples) > 0:
|
| 71 |
example = examples[0]
|
| 72 |
+
elif not is_dataset and len(examples) > 0:
|
| 73 |
+
example = examples[0]
|
| 74 |
+
else:
|
| 75 |
+
print("No examples found")
|
| 76 |
+
return np.nan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
print("\n===== EXAMPLE DATA INSPECTION =====")
|
| 79 |
+
print(f"Keys in example: {example.keys()}")
|
| 80 |
+
|
| 81 |
+
# Try different possible field names
|
| 82 |
+
possible_reference_fields = ["transcription", "reference", "ground_truth", "target"]
|
| 83 |
+
possible_hypothesis_fields = ["input1", "hypothesis", "asr_output", "source_text"]
|
| 84 |
+
|
| 85 |
+
for field in possible_reference_fields:
|
| 86 |
+
if field in example:
|
| 87 |
+
print(f"Reference field '{field}' found with value: {str(example[field])[:100]}...")
|
| 88 |
+
|
| 89 |
+
for field in possible_hypothesis_fields:
|
| 90 |
+
if field in example:
|
| 91 |
+
print(f"Hypothesis field '{field}' found with value: {str(example[field])[:100]}...")
|
| 92 |
|
| 93 |
+
# Process each example in the dataset
|
| 94 |
+
wer_values = []
|
| 95 |
|
| 96 |
+
# Determine how to iterate based on type
|
| 97 |
+
items_to_process = examples
|
| 98 |
+
if is_dataset:
|
| 99 |
+
# Limit to first 200 examples for efficiency
|
| 100 |
+
items_to_process = examples.select(range(min(200, len(examples))))
|
| 101 |
+
else:
|
| 102 |
+
items_to_process = examples[:200] # First 200 examples
|
| 103 |
+
|
| 104 |
+
for ex in items_to_process:
|
| 105 |
try:
|
| 106 |
+
# Try to get transcription and input1
|
| 107 |
+
transcription = ex.get("transcription")
|
| 108 |
+
|
| 109 |
+
# First try input1, then use first element from hypothesis if available
|
| 110 |
+
input1 = ex.get("input1")
|
| 111 |
+
if input1 is None and "hypothesis" in ex and ex["hypothesis"]:
|
| 112 |
+
if isinstance(ex["hypothesis"], list) and len(ex["hypothesis"]) > 0:
|
| 113 |
+
input1 = ex["hypothesis"][0]
|
| 114 |
+
elif isinstance(ex["hypothesis"], str):
|
| 115 |
+
input1 = ex["hypothesis"]
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
# Skip if either field is missing
|
| 118 |
+
if not transcription or not input1:
|
| 119 |
+
continue
|
| 120 |
|
| 121 |
+
# Clean the text
|
| 122 |
+
reference = preprocess_text(transcription)
|
| 123 |
+
hypothesis = preprocess_text(input1)
|
| 124 |
+
|
| 125 |
+
# Calculate WER for this pair
|
| 126 |
if reference and hypothesis:
|
| 127 |
+
pair_wer = calculate_simple_wer(reference, hypothesis)
|
| 128 |
+
wer_values.append(pair_wer)
|
| 129 |
except Exception as ex_error:
|
| 130 |
print(f"Error processing example: {str(ex_error)}")
|
| 131 |
continue
|
| 132 |
|
| 133 |
+
# Calculate average WER
|
| 134 |
+
if not wer_values:
|
| 135 |
print("No valid pairs found for WER calculation")
|
| 136 |
return np.nan
|
| 137 |
|
| 138 |
+
avg_wer = np.mean(wer_values)
|
| 139 |
+
print(f"Calculated {len(wer_values)} pairs with average WER: {avg_wer:.4f}")
|
| 140 |
+
return avg_wer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
except Exception as e:
|
| 143 |
print(f"Error in calculate_wer: {str(e)}")
|
|
|
|
| 156 |
examples_by_source = {}
|
| 157 |
|
| 158 |
# Process all examples
|
| 159 |
+
for i, ex in enumerate(dataset):
|
| 160 |
try:
|
| 161 |
source = ex.get("source", "unknown")
|
| 162 |
if source not in examples_by_source:
|
| 163 |
examples_by_source[source] = []
|
| 164 |
examples_by_source[source].append(ex)
|
| 165 |
except Exception as e:
|
| 166 |
+
print(f"Error processing example {i}: {str(e)}")
|
| 167 |
continue
|
| 168 |
|
| 169 |
# Get all unique sources
|
|
|
|
| 179 |
|
| 180 |
if count > 0:
|
| 181 |
print(f"\nCalculating WER for source {source} with {count} examples")
|
| 182 |
+
wer = calculate_wer(examples) # Now handles both lists and datasets
|
| 183 |
else:
|
| 184 |
wer = np.nan
|
| 185 |
|
|
|
|
| 200 |
try:
|
| 201 |
total_count = len(dataset)
|
| 202 |
print(f"\nCalculating overall WER with a sample of examples")
|
| 203 |
+
# Sample for calculation
|
| 204 |
+
sample_size = min(500, total_count)
|
| 205 |
+
sample_dataset = dataset.select(range(sample_size))
|
| 206 |
+
overall_wer = calculate_wer(sample_dataset)
|
| 207 |
|
| 208 |
results.append({
|
| 209 |
"Source": "OVERALL",
|
|
|
|
| 212 |
})
|
| 213 |
except Exception as e:
|
| 214 |
print(f"Error calculating overall metrics: {str(e)}")
|
| 215 |
+
print(traceback.format_exc())
|
| 216 |
results.append({
|
| 217 |
"Source": "OVERALL",
|
| 218 |
"Count": len(dataset),
|
|
|
|
| 289 |
refresh_btn.click(refresh_and_report, outputs=[leaderboard, error_output])
|
| 290 |
|
| 291 |
if __name__ == "__main__":
|
| 292 |
+
demo.launch()
|