Gil Stetler
fix
89cf40b
raw
history blame
28.2 kB
# app.py
#import numpy as np
#import pandas as pd
#import torch
#import gradio as gr
#import matplotlib
#matplotlib.use("Agg") # headless backend for Spaces
#import matplotlib.pyplot as plt
#from chronos import ChronosPipeline
#
#MODEL_ID = "amazon/chronos-t5-large"
#PREDICTION_LENGTH = 12
#NUM_SAMPLES = 100 # increase for smoother quantiles (slower)
#
#device = "cuda" if torch.cuda.is_available() else "cpu"
#dtype = torch.bfloat16 if device == "cuda" else torch.float32
#
## Load once at startup (HF Spaces cache between runs)
#pipe = ChronosPipeline.from_pretrained(
# MODEL_ID,
# device_map="auto", # uses GPU if available
# torch_dtype=dtype,
#)
#
#def run_forecast_and_evaluate():
# # 1) Load univariate example data
# df = pd.read_csv(
# "https://raw.githubusercontent.com/AileenNielsen/TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv"
# )
# y = df["#Passengers"].astype(float).to_numpy()
# n = len(y)
#
# if n <= PREDICTION_LENGTH + 5:
# raise gr.Error("Time series too short for a holdout evaluation.")
#
# # 2) Holdout split: forecast the last 12 points
# y_train = y[: n - PREDICTION_LENGTH]
# y_test = y[n - PREDICTION_LENGTH :]
#
# context = torch.tensor(y_train, dtype=torch.float32)
# fcst = pipe.predict(context, prediction_length=PREDICTION_LENGTH, num_samples=NUM_SAMPLES) # [1, S, H]
# samples = fcst[0].cpu().numpy() # (S, H)
#
# # 3) Summaries & metrics
# p10, p50, p90 = np.quantile(samples, [0.1, 0.5, 0.9], axis=0)
#
# # Point forecast = median
# mse = float(np.mean((p50 - y_test) ** 2))
# rmse = float(np.sqrt(mse))
#
# # Percent versions (relative to the mean of true holdout)
# mean_y = float(np.mean(y_test))
# rmse_pct = float(100.0 * rmse / mean_y) # RMSE as % of mean
# mse_pct = float(100.0 * mse / (mean_y ** 2)) # MSE as % of mean^2
#
# # (Optional) MAPE if you ever want it:
# # mape_pct = float(100.0 * np.mean(np.abs((p50 - y_test) / y_test)))
#
# # 4) Plot: history + forecast horizon vs ground truth
# fig = plt.figure(figsize=(9, 4))
# x_hist = np.arange(len(y_train))
# x_fcst = np.arange(len(y_train), len(y_train) + PREDICTION_LENGTH)
#
# plt.plot(x_hist, y_train, label="history")
# plt.plot(x_fcst, y_test, label="actual (holdout)")
# plt.plot(x_fcst, p50, linestyle="--", label="forecast (median)")
# plt.fill_between(x_fcst, p10, p90, alpha=0.3, label="80% interval")
# plt.title("Chronos-T5-Large • Holdout Evaluation")
# plt.xlabel("time")
# plt.ylabel("#Passengers")
# plt.legend(loc="best")
# plt.tight_layout()
#
# # JSON payload for inspection/download
# out_json = {
# "prediction_length": int(PREDICTION_LENGTH),
# "num_samples": int(NUM_SAMPLES),
# "metrics": {
# "MSE": mse,
# "RMSE": rmse,
# "RMSE_%_of_mean": rmse_pct,
# "MSE_%_of_mean^2": mse_pct,
# # "MAPE_%": mape_pct, # uncomment if you add MAPE
# "mean_of_truth": mean_y,
# },
# "median": p50.tolist(),
# "p10": p10.tolist(),
# "p90": p90.tolist(),
# "actual": y_test.tolist(),
# }
#
# metrics_md = (
# f"**MSE:** {mse:.3f}  **RMSE:** {rmse:.3f}  "
# f"**RMSE% of mean:** {rmse_pct:.2f}%  "
# f"**MSE% of mean²:** {mse_pct:.3f}%"
# )
# return fig, out_json, metrics_md
#
#with gr.Blocks(title="Chronos-T5-Large • Holdout Demo") as demo:
# gr.Markdown(
# "## Chronos-T5-Large (zero-shot forecasting) — Holdout Evaluation\n"
# "Click **Run** to forecast the last 12 months from AirPassengers and compare to the true values.\n"
# "Shows MSE, RMSE, and RMSE% / MSE% relative to the mean of the 12 true values."
# )
# run_btn = gr.Button("Run", variant="primary")
# plot = gr.Plot(label="Forecast vs Actual (holdout)")
# meta = gr.JSON(label="Data & Metrics")
# metrics = gr.Markdown(label="Metrics")
#
# run_btn.click(run_forecast_and_evaluate, inputs=None, outputs=[plot, meta, metrics])
#
#if __name__ == "__main__":
# demo.launch()
#
# app.py
#import os, random
#import numpy as np
#import pandas as pd
#import torch
#import gradio as gr
#import matplotlib
#matplotlib.use("Agg")
#import matplotlib.pyplot as plt
#from chronos import ChronosPipeline
#
## --------------------
## Config
## --------------------
#MODEL_ID = "amazon/chronos-t5-large"
#PREDICTION_LENGTH = 30 # letzte 30 Tage
#NUM_SAMPLES = 1 # genau EINE Bahn -> tagesgenaue Punktvorhersage
#RV_WINDOW = 20 # Rolling-Fenster für RV (Handelstage)
#ANNUALIZE = True # annualisiert mit sqrt(252)
#EPS = 1e-8 # Schutz gegen Division durch 0
#
## --------------------
## Model load
## --------------------
#device = "cuda" if torch.cuda.is_available() else "cpu"
#dtype = torch.bfloat16 if device == "cuda" else torch.float32
#
#pipe = ChronosPipeline.from_pretrained(
# MODEL_ID,
# device_map="auto",
# torch_dtype=dtype,
#)
#
## --------------------
## Helpers
## --------------------
#def _read_ohlcv_csv():
# for p in ["/mnt/data/ohlcv_clean.csv", "ohlcv_clean.csv"]:
# if os.path.exists(p):
# return pd.read_csv(p)
# raise gr.Error("CSV nicht gefunden. Lege sie unter /mnt/data/ohlcv_clean.csv oder ./ohlcv_clean.csv ab.")
#
#def _extract_close(df: pd.DataFrame) -> pd.Series:
# mapping = {c.lower(): c for c in df.columns}
# for name in ["close", "adj close", "adj_close", "price"]:
# if name in mapping:
# return pd.Series(df[mapping[name]].astype(float))
# numeric_cols = df.select_dtypes(include=[np.number]).columns
# if len(numeric_cols) == 0:
# raise gr.Error("Keine numerische Preisspalte gefunden (z.B. Close).")
# return pd.Series(df[numeric_cols[-1]].astype(float))
#
#def _extract_dates(df: pd.DataFrame):
# mapping = {c.lower(): c for c in df.columns}
# for name in ["date", "time", "timestamp"]:
# if name in mapping:
# try:
# return pd.to_datetime(df[mapping[name]]).to_numpy()
# except Exception:
# pass
# return np.arange(len(df)) # Fallback
#
#def compute_realized_vol(close: pd.Series, window: int = 20, annualize: bool = True) -> pd.Series:
# r = np.log(close).diff().dropna()
# rv = r.rolling(window, min_periods=window).std()
# if annualize:
# rv = rv * np.sqrt(252.0)
# return rv.dropna().reset_index(drop=True)
#
## --------------------
## Main
## --------------------
#def run_vol_forecast_and_evaluate():
# # Daten laden
# raw = _read_ohlcv_csv()
# dates = _extract_dates(raw)
# close = _extract_close(raw)
#
# # RV-Zeitreihe
# rv = compute_realized_vol(close, window=RV_WINDOW, annualize=ANNUALIZE).to_numpy()
# n = len(rv); H = PREDICTION_LENGTH
# if n <= H + 5:
# raise gr.Error(f"RV-Serie zu kurz nach Rolling. Benötigt > {H+5}, erhalten {n}.")
#
# # Holdout: letzte H Tage
# rv_train = rv[: n - H]
# rv_test = rv[n - H :]
#
# # Reproduzierbare EINZELNE Sample-Bahn ziehen
# random.seed(0); np.random.seed(0); torch.manual_seed(0)
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(0)
#
# context = torch.tensor(rv_train, dtype=torch.float32)
# fcst = pipe.predict(context, prediction_length=H, num_samples=NUM_SAMPLES) # [1, 1, H]
# samples = fcst[0].cpu().numpy() # (1, H)
# path_pred = samples[0] # (H,) <-- tagesgenaue Vorhersage
#
# # Tagesfehler & Prozentfehler
# err = path_pred - rv_test
# denom = np.maximum(EPS, np.abs(rv_test))
# abs_pct_err = np.abs(err) / denom * 100.0
# pct_err = err / np.maximum(EPS, rv_test) * 100.0
#
# mape_pct = float(abs_pct_err.mean()) # Hauptmetrik: mittlere absolute proz. Abweichung
# mpe_pct = float(pct_err.mean()) # signiert (Bias)
# rmse = float(np.sqrt(np.mean(err**2)))
#
# # Plot: History + Actual (Holdout) + Forecast-Pfad
# fig = plt.figure(figsize=(10, 4))
# H0 = len(rv_train)
# if isinstance(dates, np.ndarray) and dates.shape[0] >= len(close):
# dates_rv = np.array(dates[-len(rv):])
# plt.plot(dates_rv[:H0], rv_train, label="realized vol (history)")
# plt.plot(dates_rv[H0:], rv_test, label="realized vol (actual holdout)")
# plt.plot(dates_rv[H0:], path_pred, linestyle="--", label="forecast (sample path)")
# plt.xlabel("date")
# else:
# x_all = np.arange(len(rv)); x_fcst = np.arange(H0, H0 + H)
# plt.plot(x_all[:H0], rv_train, label="realized vol (history)")
# plt.plot(x_fcst, rv_test, label="realized vol (actual holdout)")
# plt.plot(x_fcst, path_pred, linestyle="--", label="forecast (sample path)")
# plt.xlabel("time index")
#
# plt.title(f"Volatility Forecast (RV window={RV_WINDOW}, H={H})")
# plt.ylabel("realized volatility")
# plt.legend(loc="best")
# plt.tight_layout()
#
# # Tabelle: Tag-für-Tag Vergleich
# if isinstance(dates, np.ndarray) and dates.shape[0] >= len(close):
# dates_rv = np.array(dates[-len(rv):])
# last_dates = dates_rv[H0:]
# else:
# last_dates = np.arange(H)
#
# df_days = pd.DataFrame({
# "date": last_dates,
# "actual_vol": rv_test,
# "forecast_vol": path_pred,
# "pct_error_% (signed)": pct_err,
# "abs_pct_error_%": abs_pct_err,
# })
#
# out_json = {
# "config": {
# "rv_window": RV_WINDOW,
# "prediction_length": H,
# "num_samples": NUM_SAMPLES,
# "annualized": ANNUALIZE,
# "point_forecast": "single_sample_path",
# "seed": 0,
# },
# "metrics": {
# "MAPE_%": mape_pct,
# "MPE_%": mpe_pct,
# "RMSE": rmse,
# },
# }
#
# metrics_md = (
# f"**MAPE (Ø absolute %-Abweichung): {mape_pct:.2f}%**  "
# f"**MPE (Ø signed %): {mpe_pct:.2f}%**  "
# f"**RMSE:** {rmse:.6f}"
# )
# return fig, out_json, df_days, metrics_md
#
## --------------------
## UI
## --------------------
#with gr.Blocks(title="Volatility Forecast • Tagesgenaue Punktwerte") as demo:
# gr.Markdown(
# "## Vorhersage der letzten 30 Tage (tagesgenaue Punktwerte)\n"
# "- Es wird **eine einzelne Sample-Bahn** prognostiziert (keine Mittelung, kein Median).\n"
# "- Vergleich pro Tag: Forecast vs. Actual + Prozentfehler.\n"
# "- Gesamt: **MAPE%** (Hauptmetrik), **MPE%** (Bias) und RMSE."
# )
# run_btn = gr.Button("Run", variant="primary")
# plot = gr.Plot(label="Forecast (einzelne Bahn) vs Actual")
# meta = gr.JSON(label="Konfiguration & Gesamtmetriken")
# table = gr.Dataframe(label="Per-Day Vergleich", wrap=True)
# metrics = gr.Markdown(label="Metriken")
#
# run_btn.click(run_vol_forecast_and_evaluate, inputs=None, outputs=[plot, meta, table, metrics])
#
#if __name__ == "__main__":
# demo.launch()
#
#
#
#import os, random
#import numpy as np
#import pandas as pd
#import torch
#import gradio as gr
#import matplotlib
#matplotlib.use("Agg")
#import matplotlib.pyplot as plt
#from chronos import ChronosPipeline
#
## --------------------
## Config
## --------------------
#MODEL_ID = "amazon/chronos-t5-large"
#PREDICTION_LENGTH = 30 # letzte 30 Tage
#NUM_SAMPLES = 1 # eine Bahn -> tagesgenaue Punktvorhersage
#RV_WINDOW = 20
#ANNUALIZE = True
#EPS = 1e-8
#
## --------------------
## Model load
## --------------------
#device = "cuda" if torch.cuda.is_available() else "cpu"
#dtype = torch.bfloat16 if device == "cuda" else torch.float32
#
#pipe = ChronosPipeline.from_pretrained(
# MODEL_ID,
# device_map="auto",
# torch_dtype=dtype,
#)
#
## --------------------
## Helpers
## --------------------
#def _read_ohlcv_csv():
# for p in ["/mnt/data/ohlcv_clean.csv", "ohlcv_clean.csv"]:
# if os.path.exists(p):
# return pd.read_csv(p)
# raise gr.Error("CSV nicht gefunden. Lege sie unter /mnt/data/ohlcv_clean.csv oder ./ohlcv_clean.csv ab.")
#
#def _extract_close(df: pd.DataFrame) -> pd.Series:
# mapping = {c.lower(): c for c in df.columns}
# for name in ["close", "adj close", "adj_close", "price"]:
# if name in mapping:
# return pd.Series(df[mapping[name]].astype(float))
# numeric_cols = df.select_dtypes(include=[np.number]).columns
# if len(numeric_cols) == 0:
# raise gr.Error("Keine numerische Preisspalte gefunden (z.B. Close).")
# return pd.Series(df[numeric_cols[-1]].astype(float))
#
#def _extract_dates(df: pd.DataFrame):
# mapping = {c.lower(): c for c in df.columns}
# for name in ["date", "time", "timestamp"]:
# if name in mapping:
# try:
# return pd.to_datetime(df[mapping[name]]).to_numpy()
# except Exception:
# pass
# return np.arange(len(df))
#
#def compute_realized_vol(close: pd.Series, window: int = 20, annualize: bool = True) -> pd.Series:
# r = np.log(close).diff().dropna()
# rv = r.rolling(window, min_periods=window).std()
# if annualize:
# rv = rv * np.sqrt(252.0)
# return rv.dropna().reset_index(drop=True)
#
## --------------------
## Main
## --------------------
#def run_vol_forecast_and_evaluate():
# # Daten laden
# raw = _read_ohlcv_csv()
# dates = _extract_dates(raw)
# close = _extract_close(raw)
#
# # Realized Volatility
# rv = compute_realized_vol(close, window=RV_WINDOW, annualize=ANNUALIZE).to_numpy()
# n = len(rv); H = PREDICTION_LENGTH
# if n <= H + 5:
# raise gr.Error(f"RV-Serie zu kurz nach Rolling. Benötigt > {H+5}, erhalten {n}.")
#
# # Split
# rv_train = rv[: n - H]
# rv_test = rv[n - H :]
#
# # Eine Sample-Bahn prognostizieren
# random.seed(0); np.random.seed(0); torch.manual_seed(0)
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(0)
#
# context = torch.tensor(rv_train, dtype=torch.float32)
# fcst = pipe.predict(context, prediction_length=H, num_samples=NUM_SAMPLES) # [1,1,H]
# samples = fcst[0].cpu().numpy()
# path_pred = samples[0] # (H,) — Punktprognose
#
# # --------------------
# # Bias-/Scale-Kalibrierung
# # --------------------
# # α so wählen, dass MSE zwischen α*pred und actual minimal wird
# alpha = float(np.sum(rv_test * path_pred) / np.sum(path_pred**2 + EPS))
# path_pred_cal = alpha * path_pred
#
# # Fehler (original & kalibriert)
# def metrics(y_true, y_pred):
# err = y_pred - y_true
# denom = np.maximum(EPS, np.abs(y_true))
# abs_pct_err = np.abs(err) / denom * 100
# pct_err = err / np.maximum(EPS, y_true) * 100
# return {
# "MAPE": abs_pct_err.mean(),
# "MPE": pct_err.mean(),
# "RMSE": np.sqrt(np.mean(err**2))
# }
#
# m_orig = metrics(rv_test, path_pred)
# m_cal = metrics(rv_test, path_pred_cal)
#
# # --------------------
# # Plot
# # --------------------
# fig = plt.figure(figsize=(10, 4))
# H0 = len(rv_train)
# if isinstance(dates, np.ndarray) and dates.shape[0] >= len(close):
# dates_rv = np.array(dates[-len(rv):])
# plt.plot(dates_rv[:H0], rv_train, label="realized vol (history)")
# plt.plot(dates_rv[H0:], rv_test, label="actual (holdout)")
# plt.plot(dates_rv[H0:], path_pred, linestyle="--", label="forecast (raw)")
# plt.plot(dates_rv[H0:], path_pred_cal, linestyle="--", label=f"forecast (calibrated, α={alpha:.3f})")
# plt.xlabel("date")
# else:
# x_all = np.arange(len(rv)); x_fcst = np.arange(H0, H0 + H)
# plt.plot(x_all[:H0], rv_train, label="realized vol (history)")
# plt.plot(x_fcst, rv_test, label="actual (holdout)")
# plt.plot(x_fcst, path_pred, linestyle="--", label="forecast (raw)")
# plt.plot(x_fcst, path_pred_cal, linestyle="--", label=f"forecast (calibrated, α={alpha:.3f})")
# plt.xlabel("time index")
#
# plt.title(f"Volatility Forecast (RV window={RV_WINDOW}, H={H})")
# plt.ylabel("realized volatility")
# plt.legend(loc="best")
# plt.tight_layout()
#
# # --------------------
# # Tages-Tabelle
# # --------------------
# if isinstance(dates, np.ndarray) and dates.shape[0] >= len(close):
# dates_rv = np.array(dates[-len(rv):])
# last_dates = dates_rv[H0:]
# else:
# last_dates = np.arange(H)
#
# abs_pct_err_orig = np.abs((path_pred - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
# abs_pct_err_cal = np.abs((path_pred_cal - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
#
# df_days = pd.DataFrame({
# "date": last_dates,
# "actual_vol": rv_test,
# "forecast_raw": path_pred,
# "forecast_calibrated": path_pred_cal,
# "abs_error_raw": np.abs(path_pred - rv_test),
# "abs_pct_error_raw_%": abs_pct_err_orig,
# "abs_pct_error_cal_%": abs_pct_err_cal,
# })
#
# # --------------------
# # Outputs
# # --------------------
# out_json = {
# "alpha": alpha,
# "metrics_raw": {k: round(v, 4) for k, v in m_orig.items()},
# "metrics_calibrated": {k: round(v, 4) for k, v in m_cal.items()},
# }
#
# metrics_md = (
# f"**Bias-/Scale-Kalibrierung** α = {alpha:.3f}\n\n"
# f"**RAW:** MAPE {m_orig['MAPE']:.2f}% | MPE {m_orig['MPE']:.2f}% | RMSE {m_orig['RMSE']:.5f}\n"
# f"**CALIBRATED:** MAPE {m_cal['MAPE']:.2f}% | MPE {m_cal['MPE']:.2f}% | RMSE {m_cal['RMSE']:.5f}"
# )
#
# return fig, out_json, df_days, metrics_md
#
## --------------------
## UI
## --------------------
#with gr.Blocks(title="Volatility Forecast • mit Bias-/Scale-Kalibrierung") as demo:
# gr.Markdown(
# "## Letzte 30 Tage Volatilität (mit automatischer Bias-/Scale-Kalibrierung)\n"
# "- Prognose einer einzelnen Sample-Bahn (kein Mittelwert, kein Median).\n"
# "- Anschließend wird ein Skalierungsfaktor α berechnet, um systematische Unter-/Überschätzung zu korrigieren.\n"
# "- Darstellung: Forecast (roh) & Forecast (kalibriert)."
# )
# run_btn = gr.Button("Run", variant="primary")
# plot = gr.Plot(label="Forecast vs Actual (roh & kalibriert)")
# meta = gr.JSON(label="Kalibrierungsparameter & Metriken")
# table = gr.Dataframe(label="Per-Day Vergleich", wrap=True)
# metrics = gr.Markdown(label="Zusammenfassung")
#
# run_btn.click(run_vol_forecast_and_evaluate, inputs=None, outputs=[plot, meta, table, metrics])
#
#if __name__ == "__main__":
# demo.launch()
#
# app.py
import os, random
from typing import Tuple
import numpy as np
import pandas as pd
import torch
import gradio as gr
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from chronos import ChronosPipeline
# our data pipeline
import pipeline_v2 as pipe2 # update_ticker_csv(...)
# --------------------
# Config
# --------------------
MODEL_ID = "amazon/chronos-t5-large"
PREDICTION_LENGTH = 30 # forecast last 30 days
NUM_SAMPLES = 1 # single path -> day-by-day point prediction
RV_WINDOW = 20 # realized vol window (trading days)
ANNUALIZE = True # annualize by sqrt(252)
EPS = 1e-8
# --------------------
# Model load (once)
# --------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipe = ChronosPipeline.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=dtype,
)
# --------------------
# Helpers
# --------------------
def _extract_close(df: pd.DataFrame) -> pd.Series:
# Prefer 'Adj Close' > 'Close', else last numeric column
mapping = {c.lower(): c for c in df.columns}
for name in ["adj close", "adj_close", "close", "price"]:
if name in mapping:
return pd.Series(df[mapping[name]]).astype(float)
num_cols = df.select_dtypes(include=[np.number]).columns
if len(num_cols) == 0:
raise gr.Error("Could not find a numeric price column (e.g., Close / Adj Close).")
return pd.Series(df[num_cols[-1]]).astype(float)
def _extract_dates(df: pd.DataFrame):
# If index is DatetimeIndex, use it
if isinstance(df.index, pd.DatetimeIndex):
return df.index.to_numpy()
# Else try a date-like column
mapping = {c.lower(): c for c in df.columns}
for name in ["date", "time", "timestamp"]:
if name in mapping:
try:
return pd.to_datetime(df[mapping[name]]).to_numpy()
except Exception:
pass
# Fallback to a simple range
return np.arange(len(df))
def compute_realized_vol(close: pd.Series, window: int = 20, annualize: bool = True) -> pd.Series:
r = np.log(close).diff().dropna()
rv = r.rolling(window, min_periods=window).std()
if annualize:
rv = rv * np.sqrt(252.0)
return rv.dropna().reset_index(drop=True)
def bias_scale_calibration(y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[float, np.ndarray]:
alpha = float(np.sum(y_true * y_pred) / (np.sum(y_pred**2) + EPS))
return alpha, alpha * y_pred
def compute_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> dict:
err = y_pred - y_true
denom = np.maximum(EPS, np.abs(y_true))
mape = float((np.abs(err) / denom).mean() * 100)
mpe = float((err / np.maximum(EPS, y_true)).mean() * 100)
rmse = float(np.sqrt(np.mean(err**2)))
return {"MAPE": mape, "MPE": mpe, "RMSE": rmse}
# --------------------
# Core routine
# --------------------
def run_for_ticker(tickers: str, start: str, interval: str, use_calibration: bool):
"""
tickers: comma/space separated; we use the FIRST for plotting/eval.
start: YYYY-MM-DD
interval: '1d', '1wk', '1mo'
"""
# Parse first ticker (keep dots and dashes!)
tick_list = [t.strip() for t in tickers.replace(";", ",").replace("|", ",").split(",") if t.strip()]
if not tick_list:
raise gr.Error("Please enter at least one ticker, e.g. AAPL or NESN.SW")
ticker = tick_list[0] # keep original form; pipeline handles uppercasing
# 1) Fetch/update CSV via pipeline
try:
csv_path = pipe2.update_ticker_csv(ticker, start=start, interval=interval)
except Exception as e:
raise gr.Error(
f"Data fetch failed for '{ticker}'. Tip: ensure exchange suffixes (e.g., NESN.SW, BMW.DE, VOD.L).\n{e}"
)
# 2) Load CSV and build realized vol
try:
df = pd.read_csv(csv_path, index_col=0, parse_dates=True)
if not isinstance(df.index, pd.DatetimeIndex):
# last fallback
df = pd.read_csv(csv_path)
except Exception:
df = pd.read_csv(csv_path)
dates = _extract_dates(df)
close = _extract_close(df)
rv = compute_realized_vol(close, window=RV_WINDOW, annualize=ANNUALIZE).to_numpy()
n = len(rv); H = PREDICTION_LENGTH
if n <= H + 5:
raise gr.Error(f"Vol series too short after rolling window. Need > {H+5}, got {n}.")
rv_train = rv[: n - H]
rv_test = rv[n - H :]
# 3) Forecast a single sample path (deterministic via seed)
random.seed(0); np.random.seed(0); torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
context = torch.tensor(rv_train, dtype=torch.float32)
fcst = pipe.predict(context, prediction_length=H, num_samples=NUM_SAMPLES) # [1, 1, H]
samples = fcst[0].cpu().numpy() # (1, H)
path_pred = samples[0] # (H,)
# 4) Optional bias/scale calibration
alpha = None
if use_calibration:
alpha, path_pred_cal = bias_scale_calibration(rv_test, path_pred)
metrics_raw = compute_metrics(rv_test, path_pred)
metrics_cal = compute_metrics(rv_test, path_pred_cal)
else:
metrics_raw = compute_metrics(rv_test, path_pred)
metrics_cal = None
path_pred_cal = None
# 5) Plot
fig = plt.figure(figsize=(10, 4))
H0 = len(rv_train)
if isinstance(dates, np.ndarray) and len(dates) >= len(close):
dates_rv = np.array(dates[-len(rv):])
x_hist = dates_rv[:H0]
x_fcst = dates_rv[H0:]
x_lbl = "date"
else:
x_hist = np.arange(H0)
x_fcst = np.arange(H0, H0 + H)
x_lbl = "time index"
plt.plot(x_hist, rv_train, label="realized vol (history)")
plt.plot(x_fcst, rv_test, label="realized vol (actual last 30)")
plt.plot(x_fcst, path_pred, linestyle="--", label="forecast (raw path)")
if use_calibration:
plt.plot(x_fcst, path_pred_cal, linestyle="--", label=f"forecast (calibrated, α={alpha:.3f})")
plt.title(f"{ticker.upper()} — Volatility Forecast (RV={RV_WINDOW}, H={H}, interval={interval})")
plt.xlabel(x_lbl); plt.ylabel("realized volatility")
plt.legend(loc="best"); plt.tight_layout()
# 6) Per-day table
last_dates = x_fcst
df_days = pd.DataFrame({
"date": last_dates,
"actual_vol": rv_test,
"forecast_raw": path_pred,
})
if use_calibration:
df_days["forecast_calibrated"] = path_pred_cal
df_days["abs_pct_error_raw_%"] = np.abs((path_pred - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
df_days["abs_pct_error_cal_%"] = np.abs((path_pred_cal - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
else:
df_days["abs_pct_error_raw_%"] = np.abs((path_pred - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
# 7) JSON + metrics text
out = {
"ticker": ticker.upper(),
"csv_path": csv_path,
"config": {
"start": start,
"interval": interval,
"rv_window": RV_WINDOW,
"prediction_length": H,
"num_samples": NUM_SAMPLES,
"annualized": ANNUALIZE,
"point_forecast": "single_sample_path",
},
"metrics_raw": {k: round(v, 4) for k, v in metrics_raw.items()},
}
metrics_md = f"**RAW** — MAPE {metrics_raw['MAPE']:.2f}% | MPE {metrics_raw['MPE']:.2f}% | RMSE {metrics_raw['RMSE']:.5f}"
if use_calibration and metrics_cal is not None:
out["alpha"] = alpha
out["metrics_calibrated"] = {k: round(v, 4) for k, v in metrics_cal.items()}
metrics_md += f"\n**CALIBRATED** — MAPE {metrics_cal['MAPE']:.2f}% | MPE {metrics_cal['MPE']:.2f}% | RMSE {metrics_cal['RMSE']:.5f}"
return fig, out, df_days, metrics_md
# --------------------
# UI
# --------------------
with gr.Blocks(title="Volatility Forecast • yfinance pipeline + Chronos") as demo:
gr.Markdown(
"### Predict last 30 days of realized volatility for any ticker\n"
"- Works with symbols like `AAPL`, `NESN.SW`, `BMW.DE`, `VOD.L`, `BRK-B`, `BTC-USD`.\n"
"- Data fetched via **yfinance** using your `pipeline_v2.update_ticker_csv`.\n"
"- Forecast uses **Chronos-T5-Large** (single path, deterministic seed).\n"
"- Day-by-day comparison with **MAPE/MPE/RMSE**.\n"
"- Optional **Bias/Scale Calibration (α)**."
)
with gr.Row():
tickers_in = gr.Textbox(value="AAPL", label="Ticker (you can use suffixes like NESN.SW, BMW.DE)")
with gr.Row():
start_in = gr.Textbox(value="2015-01-01", label="Start date (YYYY-MM-DD)")
interval_in = gr.Dropdown(choices=["1d", "1wk", "1mo"], value="1d", label="Interval")
calib_in = gr.Checkbox(value=True, label="Apply bias/scale calibration (α)")
run_btn = gr.Button("Run", variant="primary")
plot = gr.Plot(label="Forecast vs Actual (last 30 days)")
meta = gr.JSON(label="Run config & metrics")
table = gr.Dataframe(label="Per-day comparison", wrap=True)
metrics = gr.Markdown(label="Summary")
run_btn.click(run_for_ticker, inputs=[tickers_in, start_in, interval_in, calib_in],
outputs=[plot, meta, table, metrics])
if __name__ == "__main__":
demo.launch()