HaryaniAnjali commited on
Commit
a9c674c
·
verified ·
1 Parent(s): b126464

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import os
3
  import requests
4
  from bs4 import BeautifulSoup
5
- from langchain.embeddings import HuggingFaceEmbeddings
6
  from langchain.vectorstores import FAISS
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  from langchain.memory import ConversationBufferMemory
@@ -75,7 +75,7 @@ book_url = "https://www.gutenberg.org/files/11/11-0.txt"
75
 
76
  # Function to fetch and process the book
77
  @st.cache_resource
78
- def process_book(book_url):
79
  # Download the book
80
  response = requests.get(book_url)
81
  if response.status_code != 200:
@@ -96,9 +96,9 @@ def process_book(book_url):
96
  )
97
  chunks = text_splitter.split_text(cleaned_text)
98
 
99
- # Create embeddings
100
- embeddings = HuggingFaceEmbeddings(
101
- model_name="sentence-transformers/all-MiniLM-L6-v2"
102
  )
103
 
104
  # Create vector store
@@ -164,7 +164,7 @@ else:
164
  # Process the book when needed
165
  if not st.session_state.book_processed:
166
  with st.spinner("Processing Alice in Wonderland... This may take a minute."):
167
- vector_store = process_book(book_url)
168
  st.session_state.agent = create_langchain_agent(vector_store)
169
  st.session_state.book_processed = True
170
  st.success("Alice in Wonderland processed successfully!")
 
2
  import os
3
  import requests
4
  from bs4 import BeautifulSoup
5
+ from langchain.embeddings import OpenAIEmbeddings
6
  from langchain.vectorstores import FAISS
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  from langchain.memory import ConversationBufferMemory
 
75
 
76
  # Function to fetch and process the book
77
  @st.cache_resource
78
+ def process_book(book_url, api_key):
79
  # Download the book
80
  response = requests.get(book_url)
81
  if response.status_code != 200:
 
96
  )
97
  chunks = text_splitter.split_text(cleaned_text)
98
 
99
+ # Create embeddings using OpenAI
100
+ embeddings = OpenAIEmbeddings(
101
+ openai_api_key=openai_api_key
102
  )
103
 
104
  # Create vector store
 
164
  # Process the book when needed
165
  if not st.session_state.book_processed:
166
  with st.spinner("Processing Alice in Wonderland... This may take a minute."):
167
+ vector_store = process_book(book_url, openai_api_key)
168
  st.session_state.agent = create_langchain_agent(vector_store)
169
  st.session_state.book_processed = True
170
  st.success("Alice in Wonderland processed successfully!")