Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,99 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
import librosa
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
|
| 7 |
-
# Load model
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
model = AutoModelForAudioClassification.from_pretrained(model_id)
|
| 11 |
|
| 12 |
-
# Define emotions
|
| 13 |
emotions = ["neutral", "happy", "sad", "angry", "fearful", "disgust", "surprised"]
|
| 14 |
|
| 15 |
-
def
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
# Create Gradio interface
|
| 35 |
demo = gr.Interface(
|
| 36 |
fn=predict_emotion,
|
| 37 |
-
inputs=gr.Audio(
|
| 38 |
outputs=gr.Label(num_top_classes=7),
|
| 39 |
title="Speech Emotion Recognition",
|
| 40 |
-
description="Upload audio or record your voice to identify the emotion. This model can detect neutral, happy, sad, angry, fearful, disgust, and surprised emotions."
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
|
|
|
| 3 |
import librosa
|
| 4 |
import numpy as np
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
# Load the model directly from the .h5 file
|
| 8 |
+
model_path = os.path.join(os.path.dirname(__file__), 'wav2vec_model.h5')
|
| 9 |
+
model = tf.keras.models.load_model(model_path)
|
|
|
|
| 10 |
|
| 11 |
+
# Define emotions list
|
| 12 |
emotions = ["neutral", "happy", "sad", "angry", "fearful", "disgust", "surprised"]
|
| 13 |
|
| 14 |
+
def extract_features(audio_path, sample_rate=16000, n_mfcc=13, max_length=128):
|
| 15 |
+
"""Extract MFCC features from an audio file"""
|
| 16 |
+
try:
|
| 17 |
+
audio, sr = librosa.load(audio_path, sr=sample_rate)
|
| 18 |
+
|
| 19 |
+
# Extract MFCCs
|
| 20 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=n_mfcc)
|
| 21 |
+
|
| 22 |
+
# Pad or truncate to fixed length
|
| 23 |
+
if mfccs.shape[1] < max_length:
|
| 24 |
+
pad_width = max_length - mfccs.shape[1]
|
| 25 |
+
mfccs = np.pad(mfccs, pad_width=((0, 0), (0, pad_width)), mode='constant')
|
| 26 |
+
else:
|
| 27 |
+
mfccs = mfccs[:, :max_length]
|
| 28 |
+
|
| 29 |
+
return mfccs
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error in feature extraction: {e}")
|
| 32 |
+
return None
|
| 33 |
+
|
| 34 |
+
def predict_emotion(audio):
|
| 35 |
+
"""Predict emotion from audio input
|
| 36 |
|
| 37 |
+
This function accepts both file path (when uploading) and audio array
|
| 38 |
+
(when recording via microphone) as input
|
| 39 |
+
"""
|
| 40 |
+
try:
|
| 41 |
+
# Check if audio is a file path or audio array
|
| 42 |
+
if isinstance(audio, str): # File path
|
| 43 |
+
features = extract_features(audio)
|
| 44 |
+
else: # Audio array from microphone
|
| 45 |
+
# If audio is a tuple (audio array, sample rate)
|
| 46 |
+
if isinstance(audio, tuple):
|
| 47 |
+
audio_array, sample_rate = audio
|
| 48 |
+
else:
|
| 49 |
+
# If only audio array is provided, assume sample rate
|
| 50 |
+
audio_array = audio
|
| 51 |
+
sample_rate = 16000
|
| 52 |
+
|
| 53 |
+
# Convert to mono if stereo
|
| 54 |
+
if len(audio_array.shape) > 1:
|
| 55 |
+
audio_array = np.mean(audio_array, axis=1)
|
| 56 |
+
|
| 57 |
+
# Extract features
|
| 58 |
+
mfccs = librosa.feature.mfcc(y=audio_array, sr=sample_rate, n_mfcc=13)
|
| 59 |
+
|
| 60 |
+
# Pad or truncate to fixed length
|
| 61 |
+
max_length = 128
|
| 62 |
+
if mfccs.shape[1] < max_length:
|
| 63 |
+
pad_width = max_length - mfccs.shape[1]
|
| 64 |
+
mfccs = np.pad(mfccs, pad_width=((0, 0), (0, pad_width)), mode='constant')
|
| 65 |
+
else:
|
| 66 |
+
mfccs = mfccs[:, :max_length]
|
| 67 |
+
|
| 68 |
+
features = mfccs
|
| 69 |
+
|
| 70 |
+
if features is None:
|
| 71 |
+
return {emotion: 0.0 for emotion in emotions}
|
| 72 |
+
|
| 73 |
+
# Reshape for model input
|
| 74 |
+
features = np.expand_dims(features, axis=0)
|
| 75 |
+
|
| 76 |
+
# Make prediction
|
| 77 |
+
predictions = model.predict(features)
|
| 78 |
+
|
| 79 |
+
# Format results
|
| 80 |
+
result = {emotion: float(predictions[0][i]) for i, emotion in enumerate(emotions)}
|
| 81 |
+
return result
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"Error in prediction: {e}")
|
| 85 |
+
return {emotion: 0.0 for emotion in emotions}
|
| 86 |
|
| 87 |
+
# Create Gradio interface with both file upload and microphone
|
| 88 |
demo = gr.Interface(
|
| 89 |
fn=predict_emotion,
|
| 90 |
+
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
|
| 91 |
outputs=gr.Label(num_top_classes=7),
|
| 92 |
title="Speech Emotion Recognition",
|
| 93 |
+
description="Upload an audio file or record your voice to identify the emotion. This model can detect neutral, happy, sad, angry, fearful, disgust, and surprised emotions.",
|
| 94 |
+
examples=[
|
| 95 |
+
["example1.wav"], # Add example files here if you have them
|
| 96 |
+
]
|
| 97 |
)
|
| 98 |
|
| 99 |
demo.launch()
|