xinjie.wang
update
43fd7b6
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
gradio_tmp_dir = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "gradio_cache"
)
os.makedirs(gradio_tmp_dir, exist_ok=True)
os.environ["GRADIO_TEMP_DIR"] = gradio_tmp_dir
import shutil
import uuid
import xml.etree.ElementTree as ET
from pathlib import Path
import gradio as gr
import pandas as pd
from app_style import custom_theme, lighting_css
from embodied_gen.utils.tags import VERSION
try:
from embodied_gen.utils.gpt_clients import GPT_CLIENT as gpt_client
gpt_client.check_connection()
GPT_AVAILABLE = True
except Exception as e:
gpt_client = None
GPT_AVAILABLE = False
print(
f"Warning: GPT client could not be initialized. Search will be disabled. Error: {e}"
)
# --- Configuration & Data Loading ---
RUNNING_MODE = "hf_remote" # local or hf_remote
CSV_FILE = "dataset_index.csv"
# Compatible with huggingface space zero GPU
import spaces
@spaces.GPU
def fake_gpu_init():
pass
fake_gpu_init()
if RUNNING_MODE == "local":
DATA_ROOT = "/horizon-bucket/robot_lab/datasets/embodiedgen/assets"
elif RUNNING_MODE == "hf_remote":
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="HorizonRobotics/EmbodiedGenData",
repo_type="dataset",
allow_patterns=f"dataset/**",
local_dir="EmbodiedGenData",
local_dir_use_symlinks=False,
)
DATA_ROOT = "EmbodiedGenData/dataset"
else:
raise ValueError(
f"Unknown RUNNING_MODE: {RUNNING_MODE}, must be 'local' or 'hf_remote'."
)
csv_path = os.path.join(DATA_ROOT, CSV_FILE)
df = pd.read_csv(csv_path)
TMP_DIR = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "sessions/asset_viewer"
)
os.makedirs(TMP_DIR, exist_ok=True)
# --- Custom CSS for Styling ---
css = """
.gradio-container .gradio-group { box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
#asset-gallery { border: 1px solid #E5E7EB; border-radius: 8px; padding: 8px; background-color: #F9FAFB; }
"""
lighting_css = """
<style>
#visual_mesh canvas { filter: brightness(2.2) !important; }
#collision_mesh_a canvas, #collision_mesh_b canvas { filter: brightness(1.0) !important; }
</style>
"""
_prev_temp = {}
def _unique_path(
src_path: str | None, session_hash: str, kind: str
) -> str | None:
"""Link/copy src to GRADIO_TEMP_DIR/session_hash with random filename. Always return a fresh URL."""
if not src_path:
return None
tmp_root = (
Path(os.environ.get("GRADIO_TEMP_DIR", "/tmp"))
/ "model3d-cache"
/ session_hash
)
tmp_root.mkdir(parents=True, exist_ok=True)
# rolling cleanup for same kind
prev = _prev_temp.get(session_hash, {})
old = prev.get(kind)
if old and old.exists():
old.unlink()
ext = Path(src_path).suffix or ".glb"
dst = tmp_root / f"{kind}-{uuid.uuid4().hex}{ext}"
shutil.copy2(src_path, dst)
prev[kind] = dst
_prev_temp[session_hash] = prev
return str(dst)
# --- Helper Functions (data filtering) ---
def get_primary_categories():
return sorted(df["primary_category"].dropna().unique())
def get_secondary_categories(primary):
if not primary:
return []
return sorted(
df[df["primary_category"] == primary]["secondary_category"]
.dropna()
.unique()
)
def get_categories(primary, secondary):
if not primary or not secondary:
return []
return sorted(
df[
(df["primary_category"] == primary)
& (df["secondary_category"] == secondary)
]["category"]
.dropna()
.unique()
)
def get_assets(primary, secondary, category):
if not primary or not secondary:
return [], gr.update(interactive=False), pd.DataFrame()
subset = df[
(df["primary_category"] == primary)
& (df["secondary_category"] == secondary)
]
if category:
subset = subset[subset["category"] == category]
items = []
for row in subset.itertuples():
asset_dir = os.path.join(DATA_ROOT, row.asset_dir)
video_path = None
if pd.notna(asset_dir) and os.path.exists(asset_dir):
for f in os.listdir(asset_dir):
if f.lower().endswith(".mp4"):
video_path = os.path.join(asset_dir, f)
break
items.append(
video_path
if video_path
else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview"
)
return items, gr.update(interactive=True), subset
def search_assets(query: str, top_k: int):
if not GPT_AVAILABLE or not query:
gr.Warning(
"GPT client is not available or query is empty. Cannot perform search."
)
return [], gr.update(interactive=False), pd.DataFrame()
gr.Info(f"Searching for assets matching: '{query}'...")
keywords = query.split()
keyword_filter = pd.Series([False] * len(df), index=df.index)
for keyword in keywords:
keyword_filter |= df['description'].str.contains(
keyword, case=False, na=False
)
candidates = df[keyword_filter]
if len(candidates) > 100:
candidates = candidates.head(100)
if candidates.empty:
gr.Warning("No assets found matching the keywords.")
return [], gr.update(interactive=True), pd.DataFrame()
try:
descriptions = [
f"{idx}: {desc}" for idx, desc in candidates['description'].items()
]
descriptions_text = "\n".join(descriptions)
prompt = f"""
A user is searching for 3D assets with the query: "{query}".
Below is a list of available assets, each with an ID and a description.
Please evaluate how well each asset description matches the user's query and rate them on a scale from 0 to 10, where 10 is a perfect match.
Your task is to return a list of the top {top_k} asset IDs, sorted from the most relevant to the least relevant.
The output format must be a simple comma-separated list of IDs, for example: "123,45,678". Do not add any other text.
Asset Descriptions:
{descriptions_text}
User Query: "{query}"
Top {top_k} sorted asset IDs:
"""
response = gpt_client.query(prompt)
sorted_ids_str = response.strip().split(',')
sorted_ids = [
int(id_str.strip())
for id_str in sorted_ids_str
if id_str.strip().isdigit()
]
top_assets = df.loc[sorted_ids].head(top_k)
except Exception as e:
gr.Error(f"An error occurred while using GPT for ranking: {e}")
top_assets = candidates.head(top_k)
items = []
for row in top_assets.itertuples():
asset_dir = os.path.join(DATA_ROOT, row.asset_dir)
video_path = None
if pd.notna(row.asset_dir) and os.path.exists(asset_dir):
for f in os.listdir(asset_dir):
if f.lower().endswith(".mp4"):
video_path = os.path.join(asset_dir, f)
break
items.append(
video_path
if video_path
else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview"
)
gr.Info(f"Found {len(items)} assets.")
return items, gr.update(interactive=True), top_assets
def _extract_mesh_paths(row) -> tuple[str | None, str | None, str]:
desc = row["description"]
urdf_path = os.path.join(DATA_ROOT, row["urdf_path"])
asset_dir = os.path.join(DATA_ROOT, row["asset_dir"])
visual_mesh_path = None
collision_mesh_path = None
if pd.notna(urdf_path) and os.path.exists(urdf_path):
try:
tree = ET.parse(urdf_path)
root = tree.getroot()
visual_mesh_element = root.find('.//visual/geometry/mesh')
if visual_mesh_element is not None:
visual_mesh_filename = visual_mesh_element.get('filename')
if visual_mesh_filename:
glb_filename = (
os.path.splitext(visual_mesh_filename)[0] + ".glb"
)
potential_path = os.path.join(asset_dir, glb_filename)
if os.path.exists(potential_path):
visual_mesh_path = potential_path
collision_mesh_element = root.find('.//collision/geometry/mesh')
if collision_mesh_element is not None:
collision_mesh_filename = collision_mesh_element.get(
'filename'
)
if collision_mesh_filename:
potential_collision_path = os.path.join(
asset_dir, collision_mesh_filename
)
if os.path.exists(potential_collision_path):
collision_mesh_path = potential_collision_path
except ET.ParseError:
desc = f"Error: Failed to parse URDF at {urdf_path}. {desc}"
except Exception as e:
desc = f"An error occurred while processing URDF: {str(e)}. {desc}"
return visual_mesh_path, collision_mesh_path, desc
def show_asset_from_gallery(
evt: gr.SelectData,
primary: str,
secondary: str,
category: str,
search_query: str,
gallery_df: pd.DataFrame,
):
"""Parse the selected asset and return raw paths + metadata."""
index = evt.index
if search_query and gallery_df is not None and not gallery_df.empty:
subset = gallery_df
else:
if not primary or not secondary:
return (
None, # visual_path
None, # collision_path
"Error: Primary or secondary category not selected.",
None, # asset_dir
None, # urdf_path
"N/A",
"N/A",
"N/A",
"N/A",
)
subset = df[
(df["primary_category"] == primary)
& (df["secondary_category"] == secondary)
]
if category:
subset = subset[subset["category"] == category]
if subset.empty or index >= len(subset):
return (
None,
None,
"Error: Selection index is out of bounds or data is missing.",
None,
None,
"N/A",
"N/A",
"N/A",
"N/A",
)
row = subset.iloc[index]
visual_path, collision_path, desc = _extract_mesh_paths(row)
urdf_path = os.path.join(DATA_ROOT, row["urdf_path"])
asset_dir = os.path.join(DATA_ROOT, row["asset_dir"])
# read extra info
est_type_text = "N/A"
est_height_text = "N/A"
est_mass_text = "N/A"
est_mu_text = "N/A"
if pd.notna(urdf_path) and os.path.exists(urdf_path):
try:
tree = ET.parse(urdf_path)
root = tree.getroot()
category_elem = root.find('.//extra_info/category')
if category_elem is not None and category_elem.text:
est_type_text = category_elem.text.strip()
height_elem = root.find('.//extra_info/real_height')
if height_elem is not None and height_elem.text:
est_height_text = height_elem.text.strip()
mass_elem = root.find('.//extra_info/min_mass')
if mass_elem is not None and mass_elem.text:
est_mass_text = mass_elem.text.strip()
mu_elem = root.find('.//collision/gazebo/mu2')
if mu_elem is not None and mu_elem.text:
est_mu_text = mu_elem.text.strip()
except Exception:
pass
return (
visual_path,
collision_path,
desc,
asset_dir,
urdf_path,
est_type_text,
est_height_text,
est_mass_text,
est_mu_text,
)
def render_meshes(
visual_path: str | None,
collision_path: str | None,
switch_viewer: bool,
req: gr.Request,
):
session_hash = getattr(req, "session_hash", "default")
if switch_viewer:
yield (
gr.update(value=None),
gr.update(value=None, visible=False),
gr.update(value=None, visible=True),
True,
)
else:
yield (
gr.update(value=None),
gr.update(value=None, visible=True),
gr.update(value=None, visible=False),
True,
)
visual_unique = (
_unique_path(visual_path, session_hash, "visual")
if visual_path
else None
)
collision_unique = (
_unique_path(collision_path, session_hash, "collision")
if collision_path
else None
)
if switch_viewer:
yield (
gr.update(value=visual_unique),
gr.update(value=None, visible=False),
gr.update(value=collision_unique, visible=True),
False,
)
else:
yield (
gr.update(value=visual_unique),
gr.update(value=collision_unique, visible=True),
gr.update(value=None, visible=False),
True,
)
def create_asset_zip(asset_dir: str, req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
asset_folder_name = os.path.basename(os.path.normpath(asset_dir))
zip_path_base = os.path.join(user_dir, asset_folder_name)
archive_path = shutil.make_archive(
base_name=zip_path_base, format='zip', root_dir=asset_dir
)
gr.Info(f"✅ {asset_folder_name}.zip is ready and can be downloaded.")
return archive_path
def start_session(req: gr.Request) -> None:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request) -> None:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if os.path.exists(user_dir):
shutil.rmtree(user_dir)
# --- UI ---
with gr.Blocks(
theme=custom_theme,
css=css,
title="3D Asset Library",
) as demo:
# gr.HTML(lighting_css, visible=False)
gr.Markdown(
"""
## 🏛️ ***EmbodiedGen***: 3D Asset Gallery Explorer
**🔖 Version**: {VERSION}
<p style="display: flex; gap: 10px; flex-wrap: nowrap;">
<a href="https://horizonrobotics.github.io/EmbodiedGen">
<img alt="📖 Documentation" src="https://img.shields.io/badge/📖-Documentation-blue">
</a>
<a href="https://arxiv.org/abs/2506.10600">
<img alt="📄 arXiv" src="https://img.shields.io/badge/📄-arXiv-b31b1b">
</a>
<a href="https://github.com/HorizonRobotics/EmbodiedGen">
<img alt="💻 GitHub" src="https://img.shields.io/badge/GitHub-000000?logo=github">
</a>
<a href="https://www.youtube.com/watch?v=rG4odybuJRk">
<img alt="🎥 Video" src="https://img.shields.io/badge/🎥-Video-red">
</a>
</p>
Browse and visualize the EmbodiedGen 3D asset database. Select categories to filter and click on a preview to load the model.
""".format(
VERSION=VERSION
),
elem_classes=["header"],
)
primary_list = get_primary_categories()
primary_val = primary_list[0] if primary_list else None
secondary_list = get_secondary_categories(primary_val)
secondary_val = secondary_list[0] if secondary_list else None
category_list = get_categories(primary_val, secondary_val)
category_val = category_list[0] if category_list else None
asset_folder = gr.State(value=None)
gallery_df_state = gr.State()
switch_viewer_state = gr.State(value=False)
with gr.Row(equal_height=False):
with gr.Column(scale=1, min_width=350):
with gr.Group():
gr.Markdown("### Search Asset with Descriptions")
search_box = gr.Textbox(
label="🔎 Enter your search query",
placeholder="e.g., 'a red chair with four legs'",
interactive=GPT_AVAILABLE,
)
top_k_slider = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=1,
label="Number of results",
interactive=GPT_AVAILABLE,
)
search_button = gr.Button(
"Search", variant="primary", interactive=GPT_AVAILABLE
)
if not GPT_AVAILABLE:
gr.Markdown(
"<p style='color: #ff4b4b;'>⚠️ GPT client not available. Search is disabled.</p>"
)
with gr.Group():
gr.Markdown("### Select Asset Category")
primary = gr.Dropdown(
choices=primary_list,
value=primary_val,
label="🗂️ Primary Category",
)
secondary = gr.Dropdown(
choices=secondary_list,
value=secondary_val,
label="📂 Secondary Category",
)
category = gr.Dropdown(
choices=category_list,
value=category_val,
label="🏷️ Asset Category",
)
with gr.Group():
initial_assets, _, initial_df = get_assets(
primary_val, secondary_val, category_val
)
gallery = gr.Gallery(
value=initial_assets,
label="🖼️ Asset Previews",
columns=3,
height="auto",
allow_preview=True,
elem_id="asset-gallery",
interactive=bool(category_val),
)
with gr.Column(scale=2, min_width=500):
with gr.Group():
with gr.Tabs():
with gr.TabItem("Visual Mesh") as t1:
viewer = gr.Model3D(
label="🧊 3D Model Viewer",
height=500,
clear_color=[0.95, 0.95, 0.95],
elem_id="visual_mesh",
)
with gr.TabItem("Collision Mesh") as t2:
collision_viewer_a = gr.Model3D(
label="🧊 Collision Mesh",
height=500,
clear_color=[0.95, 0.95, 0.95],
elem_id="collision_mesh_a",
visible=True,
)
collision_viewer_b = gr.Model3D(
label="🧊 Collision Mesh",
height=500,
clear_color=[0.95, 0.95, 0.95],
elem_id="collision_mesh_b",
visible=False,
)
t1.select(
fn=lambda: None,
js="() => { window.dispatchEvent(new Event('resize')); }",
)
t2.select(
fn=lambda: None,
js="() => { window.dispatchEvent(new Event('resize')); }",
)
with gr.Row():
est_type_text = gr.Textbox(
label="Asset category", interactive=False
)
est_height_text = gr.Textbox(
label="Real height(.m)", interactive=False
)
est_mass_text = gr.Textbox(
label="Mass(.kg)", interactive=False
)
est_mu_text = gr.Textbox(
label="Friction coefficient", interactive=False
)
with gr.Row():
desc_box = gr.Textbox(
label="📝 Asset Description", interactive=False
)
with gr.Accordion(label="Asset Details", open=False):
urdf_file = gr.Textbox(
label="URDF File Path", interactive=False, lines=2
)
with gr.Row():
extract_btn = gr.Button(
"📥 Extract Asset",
variant="primary",
interactive=False,
)
download_btn = gr.DownloadButton(
label="⬇️ Download Asset",
variant="primary",
interactive=False,
)
search_button.click(
fn=search_assets,
inputs=[search_box, top_k_slider],
outputs=[gallery, gallery, gallery_df_state],
)
search_box.submit(
fn=search_assets,
inputs=[search_box, top_k_slider],
outputs=[gallery, gallery, gallery_df_state],
)
def update_on_primary_change(p):
s_choices = get_secondary_categories(p)
initial_assets, gallery_update, initial_df = get_assets(p, None, None)
return (
gr.update(choices=s_choices, value=None),
gr.update(choices=[], value=None),
initial_assets,
gallery_update,
initial_df,
)
def update_on_secondary_change(p, s):
c_choices = get_categories(p, s)
asset_previews, gallery_update, gallery_df = get_assets(p, s, None)
return (
gr.update(choices=c_choices, value=None),
asset_previews,
gallery_update,
gallery_df,
)
def update_assets(p, s, c):
asset_previews, gallery_update, gallery_df = get_assets(p, s, c)
return asset_previews, gallery_update, gallery_df
primary.change(
fn=update_on_primary_change,
inputs=[primary],
outputs=[secondary, category, gallery, gallery, gallery_df_state],
)
secondary.change(
fn=update_on_secondary_change,
inputs=[primary, secondary],
outputs=[category, gallery, gallery, gallery_df_state],
)
category.change(
fn=update_assets,
inputs=[primary, secondary, category],
outputs=[gallery, gallery, gallery_df_state],
)
gallery.select(
fn=show_asset_from_gallery,
inputs=[primary, secondary, category, search_box, gallery_df_state],
outputs=[
(visual_path_state := gr.State()),
(collision_path_state := gr.State()),
desc_box,
asset_folder,
urdf_file,
est_type_text,
est_height_text,
est_mass_text,
est_mu_text,
],
).then(
fn=render_meshes,
inputs=[visual_path_state, collision_path_state, switch_viewer_state],
outputs=[
viewer,
collision_viewer_a,
collision_viewer_b,
switch_viewer_state,
],
).success(
lambda: (gr.Button(interactive=True), gr.Button(interactive=False)),
outputs=[extract_btn, download_btn],
)
extract_btn.click(
fn=create_asset_zip, inputs=[asset_folder], outputs=[download_btn]
).success(fn=lambda: gr.update(interactive=True), outputs=download_btn)
demo.load(start_session)
demo.unload(end_session)
if __name__ == "__main__":
demo.launch()