|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
|
gradio_tmp_dir = os.path.join( |
|
|
os.path.dirname(os.path.abspath(__file__)), "gradio_cache" |
|
|
) |
|
|
os.makedirs(gradio_tmp_dir, exist_ok=True) |
|
|
os.environ["GRADIO_TEMP_DIR"] = gradio_tmp_dir |
|
|
|
|
|
import shutil |
|
|
import uuid |
|
|
import xml.etree.ElementTree as ET |
|
|
from pathlib import Path |
|
|
|
|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
from app_style import custom_theme, lighting_css |
|
|
from embodied_gen.utils.tags import VERSION |
|
|
|
|
|
try: |
|
|
from embodied_gen.utils.gpt_clients import GPT_CLIENT as gpt_client |
|
|
|
|
|
gpt_client.check_connection() |
|
|
GPT_AVAILABLE = True |
|
|
except Exception as e: |
|
|
gpt_client = None |
|
|
GPT_AVAILABLE = False |
|
|
print( |
|
|
f"Warning: GPT client could not be initialized. Search will be disabled. Error: {e}" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
RUNNING_MODE = "hf_remote" |
|
|
CSV_FILE = "dataset_index.csv" |
|
|
|
|
|
|
|
|
import spaces |
|
|
@spaces.GPU |
|
|
def fake_gpu_init(): |
|
|
pass |
|
|
fake_gpu_init() |
|
|
|
|
|
if RUNNING_MODE == "local": |
|
|
DATA_ROOT = "/horizon-bucket/robot_lab/datasets/embodiedgen/assets" |
|
|
elif RUNNING_MODE == "hf_remote": |
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
snapshot_download( |
|
|
repo_id="HorizonRobotics/EmbodiedGenData", |
|
|
repo_type="dataset", |
|
|
allow_patterns=f"dataset/**", |
|
|
local_dir="EmbodiedGenData", |
|
|
local_dir_use_symlinks=False, |
|
|
) |
|
|
DATA_ROOT = "EmbodiedGenData/dataset" |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unknown RUNNING_MODE: {RUNNING_MODE}, must be 'local' or 'hf_remote'." |
|
|
) |
|
|
|
|
|
csv_path = os.path.join(DATA_ROOT, CSV_FILE) |
|
|
df = pd.read_csv(csv_path) |
|
|
TMP_DIR = os.path.join( |
|
|
os.path.dirname(os.path.abspath(__file__)), "sessions/asset_viewer" |
|
|
) |
|
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
css = """ |
|
|
.gradio-container .gradio-group { box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; } |
|
|
#asset-gallery { border: 1px solid #E5E7EB; border-radius: 8px; padding: 8px; background-color: #F9FAFB; } |
|
|
""" |
|
|
|
|
|
lighting_css = """ |
|
|
<style> |
|
|
#visual_mesh canvas { filter: brightness(2.2) !important; } |
|
|
#collision_mesh_a canvas, #collision_mesh_b canvas { filter: brightness(1.0) !important; } |
|
|
</style> |
|
|
""" |
|
|
|
|
|
_prev_temp = {} |
|
|
|
|
|
|
|
|
def _unique_path( |
|
|
src_path: str | None, session_hash: str, kind: str |
|
|
) -> str | None: |
|
|
"""Link/copy src to GRADIO_TEMP_DIR/session_hash with random filename. Always return a fresh URL.""" |
|
|
if not src_path: |
|
|
return None |
|
|
tmp_root = ( |
|
|
Path(os.environ.get("GRADIO_TEMP_DIR", "/tmp")) |
|
|
/ "model3d-cache" |
|
|
/ session_hash |
|
|
) |
|
|
tmp_root.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
prev = _prev_temp.get(session_hash, {}) |
|
|
old = prev.get(kind) |
|
|
if old and old.exists(): |
|
|
old.unlink() |
|
|
|
|
|
ext = Path(src_path).suffix or ".glb" |
|
|
dst = tmp_root / f"{kind}-{uuid.uuid4().hex}{ext}" |
|
|
shutil.copy2(src_path, dst) |
|
|
|
|
|
prev[kind] = dst |
|
|
_prev_temp[session_hash] = prev |
|
|
return str(dst) |
|
|
|
|
|
|
|
|
|
|
|
def get_primary_categories(): |
|
|
return sorted(df["primary_category"].dropna().unique()) |
|
|
|
|
|
|
|
|
def get_secondary_categories(primary): |
|
|
if not primary: |
|
|
return [] |
|
|
return sorted( |
|
|
df[df["primary_category"] == primary]["secondary_category"] |
|
|
.dropna() |
|
|
.unique() |
|
|
) |
|
|
|
|
|
|
|
|
def get_categories(primary, secondary): |
|
|
if not primary or not secondary: |
|
|
return [] |
|
|
return sorted( |
|
|
df[ |
|
|
(df["primary_category"] == primary) |
|
|
& (df["secondary_category"] == secondary) |
|
|
]["category"] |
|
|
.dropna() |
|
|
.unique() |
|
|
) |
|
|
|
|
|
|
|
|
def get_assets(primary, secondary, category): |
|
|
if not primary or not secondary: |
|
|
return [], gr.update(interactive=False), pd.DataFrame() |
|
|
|
|
|
subset = df[ |
|
|
(df["primary_category"] == primary) |
|
|
& (df["secondary_category"] == secondary) |
|
|
] |
|
|
if category: |
|
|
subset = subset[subset["category"] == category] |
|
|
|
|
|
items = [] |
|
|
for row in subset.itertuples(): |
|
|
asset_dir = os.path.join(DATA_ROOT, row.asset_dir) |
|
|
video_path = None |
|
|
if pd.notna(asset_dir) and os.path.exists(asset_dir): |
|
|
for f in os.listdir(asset_dir): |
|
|
if f.lower().endswith(".mp4"): |
|
|
video_path = os.path.join(asset_dir, f) |
|
|
break |
|
|
items.append( |
|
|
video_path |
|
|
if video_path |
|
|
else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview" |
|
|
) |
|
|
|
|
|
return items, gr.update(interactive=True), subset |
|
|
|
|
|
|
|
|
def search_assets(query: str, top_k: int): |
|
|
if not GPT_AVAILABLE or not query: |
|
|
gr.Warning( |
|
|
"GPT client is not available or query is empty. Cannot perform search." |
|
|
) |
|
|
return [], gr.update(interactive=False), pd.DataFrame() |
|
|
|
|
|
gr.Info(f"Searching for assets matching: '{query}'...") |
|
|
|
|
|
keywords = query.split() |
|
|
keyword_filter = pd.Series([False] * len(df), index=df.index) |
|
|
for keyword in keywords: |
|
|
keyword_filter |= df['description'].str.contains( |
|
|
keyword, case=False, na=False |
|
|
) |
|
|
|
|
|
candidates = df[keyword_filter] |
|
|
|
|
|
if len(candidates) > 100: |
|
|
candidates = candidates.head(100) |
|
|
|
|
|
if candidates.empty: |
|
|
gr.Warning("No assets found matching the keywords.") |
|
|
return [], gr.update(interactive=True), pd.DataFrame() |
|
|
|
|
|
try: |
|
|
descriptions = [ |
|
|
f"{idx}: {desc}" for idx, desc in candidates['description'].items() |
|
|
] |
|
|
descriptions_text = "\n".join(descriptions) |
|
|
|
|
|
prompt = f""" |
|
|
A user is searching for 3D assets with the query: "{query}". |
|
|
Below is a list of available assets, each with an ID and a description. |
|
|
Please evaluate how well each asset description matches the user's query and rate them on a scale from 0 to 10, where 10 is a perfect match. |
|
|
|
|
|
Your task is to return a list of the top {top_k} asset IDs, sorted from the most relevant to the least relevant. |
|
|
The output format must be a simple comma-separated list of IDs, for example: "123,45,678". Do not add any other text. |
|
|
|
|
|
Asset Descriptions: |
|
|
{descriptions_text} |
|
|
|
|
|
User Query: "{query}" |
|
|
|
|
|
Top {top_k} sorted asset IDs: |
|
|
""" |
|
|
response = gpt_client.query(prompt) |
|
|
sorted_ids_str = response.strip().split(',') |
|
|
sorted_ids = [ |
|
|
int(id_str.strip()) |
|
|
for id_str in sorted_ids_str |
|
|
if id_str.strip().isdigit() |
|
|
] |
|
|
top_assets = df.loc[sorted_ids].head(top_k) |
|
|
except Exception as e: |
|
|
gr.Error(f"An error occurred while using GPT for ranking: {e}") |
|
|
top_assets = candidates.head(top_k) |
|
|
|
|
|
items = [] |
|
|
for row in top_assets.itertuples(): |
|
|
asset_dir = os.path.join(DATA_ROOT, row.asset_dir) |
|
|
video_path = None |
|
|
if pd.notna(row.asset_dir) and os.path.exists(asset_dir): |
|
|
for f in os.listdir(asset_dir): |
|
|
if f.lower().endswith(".mp4"): |
|
|
video_path = os.path.join(asset_dir, f) |
|
|
break |
|
|
items.append( |
|
|
video_path |
|
|
if video_path |
|
|
else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview" |
|
|
) |
|
|
|
|
|
gr.Info(f"Found {len(items)} assets.") |
|
|
return items, gr.update(interactive=True), top_assets |
|
|
|
|
|
|
|
|
def _extract_mesh_paths(row) -> tuple[str | None, str | None, str]: |
|
|
desc = row["description"] |
|
|
urdf_path = os.path.join(DATA_ROOT, row["urdf_path"]) |
|
|
asset_dir = os.path.join(DATA_ROOT, row["asset_dir"]) |
|
|
visual_mesh_path = None |
|
|
collision_mesh_path = None |
|
|
|
|
|
if pd.notna(urdf_path) and os.path.exists(urdf_path): |
|
|
try: |
|
|
tree = ET.parse(urdf_path) |
|
|
root = tree.getroot() |
|
|
|
|
|
visual_mesh_element = root.find('.//visual/geometry/mesh') |
|
|
if visual_mesh_element is not None: |
|
|
visual_mesh_filename = visual_mesh_element.get('filename') |
|
|
if visual_mesh_filename: |
|
|
glb_filename = ( |
|
|
os.path.splitext(visual_mesh_filename)[0] + ".glb" |
|
|
) |
|
|
potential_path = os.path.join(asset_dir, glb_filename) |
|
|
if os.path.exists(potential_path): |
|
|
visual_mesh_path = potential_path |
|
|
|
|
|
collision_mesh_element = root.find('.//collision/geometry/mesh') |
|
|
if collision_mesh_element is not None: |
|
|
collision_mesh_filename = collision_mesh_element.get( |
|
|
'filename' |
|
|
) |
|
|
if collision_mesh_filename: |
|
|
potential_collision_path = os.path.join( |
|
|
asset_dir, collision_mesh_filename |
|
|
) |
|
|
if os.path.exists(potential_collision_path): |
|
|
collision_mesh_path = potential_collision_path |
|
|
|
|
|
except ET.ParseError: |
|
|
desc = f"Error: Failed to parse URDF at {urdf_path}. {desc}" |
|
|
except Exception as e: |
|
|
desc = f"An error occurred while processing URDF: {str(e)}. {desc}" |
|
|
|
|
|
return visual_mesh_path, collision_mesh_path, desc |
|
|
|
|
|
|
|
|
def show_asset_from_gallery( |
|
|
evt: gr.SelectData, |
|
|
primary: str, |
|
|
secondary: str, |
|
|
category: str, |
|
|
search_query: str, |
|
|
gallery_df: pd.DataFrame, |
|
|
): |
|
|
"""Parse the selected asset and return raw paths + metadata.""" |
|
|
index = evt.index |
|
|
|
|
|
if search_query and gallery_df is not None and not gallery_df.empty: |
|
|
subset = gallery_df |
|
|
else: |
|
|
if not primary or not secondary: |
|
|
return ( |
|
|
None, |
|
|
None, |
|
|
"Error: Primary or secondary category not selected.", |
|
|
None, |
|
|
None, |
|
|
"N/A", |
|
|
"N/A", |
|
|
"N/A", |
|
|
"N/A", |
|
|
) |
|
|
|
|
|
subset = df[ |
|
|
(df["primary_category"] == primary) |
|
|
& (df["secondary_category"] == secondary) |
|
|
] |
|
|
if category: |
|
|
subset = subset[subset["category"] == category] |
|
|
|
|
|
if subset.empty or index >= len(subset): |
|
|
return ( |
|
|
None, |
|
|
None, |
|
|
"Error: Selection index is out of bounds or data is missing.", |
|
|
None, |
|
|
None, |
|
|
"N/A", |
|
|
"N/A", |
|
|
"N/A", |
|
|
"N/A", |
|
|
) |
|
|
|
|
|
row = subset.iloc[index] |
|
|
visual_path, collision_path, desc = _extract_mesh_paths(row) |
|
|
|
|
|
urdf_path = os.path.join(DATA_ROOT, row["urdf_path"]) |
|
|
asset_dir = os.path.join(DATA_ROOT, row["asset_dir"]) |
|
|
|
|
|
|
|
|
est_type_text = "N/A" |
|
|
est_height_text = "N/A" |
|
|
est_mass_text = "N/A" |
|
|
est_mu_text = "N/A" |
|
|
|
|
|
if pd.notna(urdf_path) and os.path.exists(urdf_path): |
|
|
try: |
|
|
tree = ET.parse(urdf_path) |
|
|
root = tree.getroot() |
|
|
category_elem = root.find('.//extra_info/category') |
|
|
if category_elem is not None and category_elem.text: |
|
|
est_type_text = category_elem.text.strip() |
|
|
height_elem = root.find('.//extra_info/real_height') |
|
|
if height_elem is not None and height_elem.text: |
|
|
est_height_text = height_elem.text.strip() |
|
|
mass_elem = root.find('.//extra_info/min_mass') |
|
|
if mass_elem is not None and mass_elem.text: |
|
|
est_mass_text = mass_elem.text.strip() |
|
|
mu_elem = root.find('.//collision/gazebo/mu2') |
|
|
if mu_elem is not None and mu_elem.text: |
|
|
est_mu_text = mu_elem.text.strip() |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
return ( |
|
|
visual_path, |
|
|
collision_path, |
|
|
desc, |
|
|
asset_dir, |
|
|
urdf_path, |
|
|
est_type_text, |
|
|
est_height_text, |
|
|
est_mass_text, |
|
|
est_mu_text, |
|
|
) |
|
|
|
|
|
|
|
|
def render_meshes( |
|
|
visual_path: str | None, |
|
|
collision_path: str | None, |
|
|
switch_viewer: bool, |
|
|
req: gr.Request, |
|
|
): |
|
|
session_hash = getattr(req, "session_hash", "default") |
|
|
|
|
|
if switch_viewer: |
|
|
yield ( |
|
|
gr.update(value=None), |
|
|
gr.update(value=None, visible=False), |
|
|
gr.update(value=None, visible=True), |
|
|
True, |
|
|
) |
|
|
else: |
|
|
yield ( |
|
|
gr.update(value=None), |
|
|
gr.update(value=None, visible=True), |
|
|
gr.update(value=None, visible=False), |
|
|
True, |
|
|
) |
|
|
|
|
|
visual_unique = ( |
|
|
_unique_path(visual_path, session_hash, "visual") |
|
|
if visual_path |
|
|
else None |
|
|
) |
|
|
collision_unique = ( |
|
|
_unique_path(collision_path, session_hash, "collision") |
|
|
if collision_path |
|
|
else None |
|
|
) |
|
|
|
|
|
if switch_viewer: |
|
|
yield ( |
|
|
gr.update(value=visual_unique), |
|
|
gr.update(value=None, visible=False), |
|
|
gr.update(value=collision_unique, visible=True), |
|
|
False, |
|
|
) |
|
|
else: |
|
|
yield ( |
|
|
gr.update(value=visual_unique), |
|
|
gr.update(value=collision_unique, visible=True), |
|
|
gr.update(value=None, visible=False), |
|
|
True, |
|
|
) |
|
|
|
|
|
|
|
|
def create_asset_zip(asset_dir: str, req: gr.Request): |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
os.makedirs(user_dir, exist_ok=True) |
|
|
|
|
|
asset_folder_name = os.path.basename(os.path.normpath(asset_dir)) |
|
|
zip_path_base = os.path.join(user_dir, asset_folder_name) |
|
|
|
|
|
archive_path = shutil.make_archive( |
|
|
base_name=zip_path_base, format='zip', root_dir=asset_dir |
|
|
) |
|
|
gr.Info(f"✅ {asset_folder_name}.zip is ready and can be downloaded.") |
|
|
|
|
|
return archive_path |
|
|
|
|
|
|
|
|
def start_session(req: gr.Request) -> None: |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
os.makedirs(user_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
def end_session(req: gr.Request) -> None: |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
if os.path.exists(user_dir): |
|
|
shutil.rmtree(user_dir) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks( |
|
|
theme=custom_theme, |
|
|
css=css, |
|
|
title="3D Asset Library", |
|
|
) as demo: |
|
|
|
|
|
gr.Markdown( |
|
|
""" |
|
|
## 🏛️ ***EmbodiedGen***: 3D Asset Gallery Explorer |
|
|
|
|
|
**🔖 Version**: {VERSION} |
|
|
<p style="display: flex; gap: 10px; flex-wrap: nowrap;"> |
|
|
<a href="https://horizonrobotics.github.io/EmbodiedGen"> |
|
|
<img alt="📖 Documentation" src="https://img.shields.io/badge/📖-Documentation-blue"> |
|
|
</a> |
|
|
<a href="https://arxiv.org/abs/2506.10600"> |
|
|
<img alt="📄 arXiv" src="https://img.shields.io/badge/📄-arXiv-b31b1b"> |
|
|
</a> |
|
|
<a href="https://github.com/HorizonRobotics/EmbodiedGen"> |
|
|
<img alt="💻 GitHub" src="https://img.shields.io/badge/GitHub-000000?logo=github"> |
|
|
</a> |
|
|
<a href="https://www.youtube.com/watch?v=rG4odybuJRk"> |
|
|
<img alt="🎥 Video" src="https://img.shields.io/badge/🎥-Video-red"> |
|
|
</a> |
|
|
</p> |
|
|
|
|
|
Browse and visualize the EmbodiedGen 3D asset database. Select categories to filter and click on a preview to load the model. |
|
|
|
|
|
""".format( |
|
|
VERSION=VERSION |
|
|
), |
|
|
elem_classes=["header"], |
|
|
) |
|
|
|
|
|
primary_list = get_primary_categories() |
|
|
primary_val = primary_list[0] if primary_list else None |
|
|
secondary_list = get_secondary_categories(primary_val) |
|
|
secondary_val = secondary_list[0] if secondary_list else None |
|
|
category_list = get_categories(primary_val, secondary_val) |
|
|
category_val = category_list[0] if category_list else None |
|
|
asset_folder = gr.State(value=None) |
|
|
gallery_df_state = gr.State() |
|
|
|
|
|
switch_viewer_state = gr.State(value=False) |
|
|
|
|
|
with gr.Row(equal_height=False): |
|
|
with gr.Column(scale=1, min_width=350): |
|
|
with gr.Group(): |
|
|
gr.Markdown("### Search Asset with Descriptions") |
|
|
search_box = gr.Textbox( |
|
|
label="🔎 Enter your search query", |
|
|
placeholder="e.g., 'a red chair with four legs'", |
|
|
interactive=GPT_AVAILABLE, |
|
|
) |
|
|
top_k_slider = gr.Slider( |
|
|
minimum=1, |
|
|
maximum=50, |
|
|
value=10, |
|
|
step=1, |
|
|
label="Number of results", |
|
|
interactive=GPT_AVAILABLE, |
|
|
) |
|
|
search_button = gr.Button( |
|
|
"Search", variant="primary", interactive=GPT_AVAILABLE |
|
|
) |
|
|
if not GPT_AVAILABLE: |
|
|
gr.Markdown( |
|
|
"<p style='color: #ff4b4b;'>⚠️ GPT client not available. Search is disabled.</p>" |
|
|
) |
|
|
|
|
|
with gr.Group(): |
|
|
gr.Markdown("### Select Asset Category") |
|
|
primary = gr.Dropdown( |
|
|
choices=primary_list, |
|
|
value=primary_val, |
|
|
label="🗂️ Primary Category", |
|
|
) |
|
|
secondary = gr.Dropdown( |
|
|
choices=secondary_list, |
|
|
value=secondary_val, |
|
|
label="📂 Secondary Category", |
|
|
) |
|
|
category = gr.Dropdown( |
|
|
choices=category_list, |
|
|
value=category_val, |
|
|
label="🏷️ Asset Category", |
|
|
) |
|
|
|
|
|
with gr.Group(): |
|
|
initial_assets, _, initial_df = get_assets( |
|
|
primary_val, secondary_val, category_val |
|
|
) |
|
|
gallery = gr.Gallery( |
|
|
value=initial_assets, |
|
|
label="🖼️ Asset Previews", |
|
|
columns=3, |
|
|
height="auto", |
|
|
allow_preview=True, |
|
|
elem_id="asset-gallery", |
|
|
interactive=bool(category_val), |
|
|
) |
|
|
|
|
|
with gr.Column(scale=2, min_width=500): |
|
|
with gr.Group(): |
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("Visual Mesh") as t1: |
|
|
viewer = gr.Model3D( |
|
|
label="🧊 3D Model Viewer", |
|
|
height=500, |
|
|
clear_color=[0.95, 0.95, 0.95], |
|
|
elem_id="visual_mesh", |
|
|
) |
|
|
with gr.TabItem("Collision Mesh") as t2: |
|
|
collision_viewer_a = gr.Model3D( |
|
|
label="🧊 Collision Mesh", |
|
|
height=500, |
|
|
clear_color=[0.95, 0.95, 0.95], |
|
|
elem_id="collision_mesh_a", |
|
|
visible=True, |
|
|
) |
|
|
collision_viewer_b = gr.Model3D( |
|
|
label="🧊 Collision Mesh", |
|
|
height=500, |
|
|
clear_color=[0.95, 0.95, 0.95], |
|
|
elem_id="collision_mesh_b", |
|
|
visible=False, |
|
|
) |
|
|
|
|
|
t1.select( |
|
|
fn=lambda: None, |
|
|
js="() => { window.dispatchEvent(new Event('resize')); }", |
|
|
) |
|
|
t2.select( |
|
|
fn=lambda: None, |
|
|
js="() => { window.dispatchEvent(new Event('resize')); }", |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
est_type_text = gr.Textbox( |
|
|
label="Asset category", interactive=False |
|
|
) |
|
|
est_height_text = gr.Textbox( |
|
|
label="Real height(.m)", interactive=False |
|
|
) |
|
|
est_mass_text = gr.Textbox( |
|
|
label="Mass(.kg)", interactive=False |
|
|
) |
|
|
est_mu_text = gr.Textbox( |
|
|
label="Friction coefficient", interactive=False |
|
|
) |
|
|
with gr.Row(): |
|
|
desc_box = gr.Textbox( |
|
|
label="📝 Asset Description", interactive=False |
|
|
) |
|
|
with gr.Accordion(label="Asset Details", open=False): |
|
|
urdf_file = gr.Textbox( |
|
|
label="URDF File Path", interactive=False, lines=2 |
|
|
) |
|
|
with gr.Row(): |
|
|
extract_btn = gr.Button( |
|
|
"📥 Extract Asset", |
|
|
variant="primary", |
|
|
interactive=False, |
|
|
) |
|
|
download_btn = gr.DownloadButton( |
|
|
label="⬇️ Download Asset", |
|
|
variant="primary", |
|
|
interactive=False, |
|
|
) |
|
|
|
|
|
search_button.click( |
|
|
fn=search_assets, |
|
|
inputs=[search_box, top_k_slider], |
|
|
outputs=[gallery, gallery, gallery_df_state], |
|
|
) |
|
|
search_box.submit( |
|
|
fn=search_assets, |
|
|
inputs=[search_box, top_k_slider], |
|
|
outputs=[gallery, gallery, gallery_df_state], |
|
|
) |
|
|
|
|
|
def update_on_primary_change(p): |
|
|
s_choices = get_secondary_categories(p) |
|
|
initial_assets, gallery_update, initial_df = get_assets(p, None, None) |
|
|
return ( |
|
|
gr.update(choices=s_choices, value=None), |
|
|
gr.update(choices=[], value=None), |
|
|
initial_assets, |
|
|
gallery_update, |
|
|
initial_df, |
|
|
) |
|
|
|
|
|
def update_on_secondary_change(p, s): |
|
|
c_choices = get_categories(p, s) |
|
|
asset_previews, gallery_update, gallery_df = get_assets(p, s, None) |
|
|
return ( |
|
|
gr.update(choices=c_choices, value=None), |
|
|
asset_previews, |
|
|
gallery_update, |
|
|
gallery_df, |
|
|
) |
|
|
|
|
|
def update_assets(p, s, c): |
|
|
asset_previews, gallery_update, gallery_df = get_assets(p, s, c) |
|
|
return asset_previews, gallery_update, gallery_df |
|
|
|
|
|
primary.change( |
|
|
fn=update_on_primary_change, |
|
|
inputs=[primary], |
|
|
outputs=[secondary, category, gallery, gallery, gallery_df_state], |
|
|
) |
|
|
secondary.change( |
|
|
fn=update_on_secondary_change, |
|
|
inputs=[primary, secondary], |
|
|
outputs=[category, gallery, gallery, gallery_df_state], |
|
|
) |
|
|
category.change( |
|
|
fn=update_assets, |
|
|
inputs=[primary, secondary, category], |
|
|
outputs=[gallery, gallery, gallery_df_state], |
|
|
) |
|
|
|
|
|
gallery.select( |
|
|
fn=show_asset_from_gallery, |
|
|
inputs=[primary, secondary, category, search_box, gallery_df_state], |
|
|
outputs=[ |
|
|
(visual_path_state := gr.State()), |
|
|
(collision_path_state := gr.State()), |
|
|
desc_box, |
|
|
asset_folder, |
|
|
urdf_file, |
|
|
est_type_text, |
|
|
est_height_text, |
|
|
est_mass_text, |
|
|
est_mu_text, |
|
|
], |
|
|
).then( |
|
|
fn=render_meshes, |
|
|
inputs=[visual_path_state, collision_path_state, switch_viewer_state], |
|
|
outputs=[ |
|
|
viewer, |
|
|
collision_viewer_a, |
|
|
collision_viewer_b, |
|
|
switch_viewer_state, |
|
|
], |
|
|
).success( |
|
|
lambda: (gr.Button(interactive=True), gr.Button(interactive=False)), |
|
|
outputs=[extract_btn, download_btn], |
|
|
) |
|
|
|
|
|
extract_btn.click( |
|
|
fn=create_asset_zip, inputs=[asset_folder], outputs=[download_btn] |
|
|
).success(fn=lambda: gr.update(interactive=True), outputs=download_btn) |
|
|
|
|
|
demo.load(start_session) |
|
|
demo.unload(end_session) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|