Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer | |
| from threading import Thread | |
| import re | |
| import time | |
| from PIL import Image | |
| import torch | |
| import spaces | |
| import os | |
| from huggingface_hub import login | |
| login(token=os.environ["HF_TOKEN"]) | |
| MODEL_ID = os.environ["MODEL_ID"] | |
| REVISION = os.environ["MODEL_REVISION"] | |
| processor = LlavaProcessor.from_pretrained(MODEL_ID, revision=REVISION) | |
| model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, revision=REVISION, torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
| model.to("cuda:0") | |
| def bot_streaming(message, history): | |
| print(message) | |
| if message["files"]: | |
| image = message["files"][-1]["path"] | |
| else: | |
| # if there's no image uploaded for this turn, look for images in the past turns | |
| # kept inside tuples, take the last one | |
| for hist in history: | |
| if type(hist[0])==tuple: | |
| image = hist[0][0] | |
| if image is None: | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| prompt=f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{message['text']}\nASSISTANT:" #f"[INST] <image>\n{message['text']} [/INST]" | |
| image = Image.open(image).convert("RGB") | |
| inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
| streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512) | |
| generated_text = "" | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| text_prompt =f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \n{message['text']}\nASSISTANT: " #f"[INST] \n{message['text']} [/INST]" | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| generated_text_without_prompt = buffer[len(text_prompt):] | |
| time.sleep(0.04) | |
| yield generated_text_without_prompt | |
| demo = gr.ChatInterface(fn=bot_streaming, title="VLM Playground", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, | |
| {"text": "How to make this pastry?", "files":["./baklava.png"]}, | |
| {"text": "What is this?", "files":["./pizza2.jpeg"]}], | |
| description="VLM Playground host HuggingFaceH4/vsft-llava-1.5-7b-hf-trl a llava SFT finetune using TRL's SFTTrainer", #for internal VLMs. Change the model ID and revision under the environments of the Space settings. | |
| stop_btn="Stop Generation", multimodal=True) | |
| demo.launch(debug=True) |