Spaces:
Running
Running
| from PIL import Image | |
| import numpy as np | |
| from collections import Counter | |
| def pixelate_image(image, pixel_size, interpolation="Nearest"): | |
| """ | |
| 对图像进行像素化。 | |
| 参数: | |
| - image: 输入的 PIL 图像对象 | |
| - pixel_size: 像素块大小 | |
| - interpolation: 插值方法 ("Nearest", "Bilinear", "Bicubic", "Lanczos") | |
| 返回: | |
| - 像素化后的 PIL 图像对象 | |
| """ | |
| img = image.convert("RGB") | |
| width, height = img.size | |
| # 使用比例调整 pixel_size,但确保至少为 1 | |
| # 基准值 512 可根据需要调整 | |
| scale_factor = max(1, min(width, height) // 512) | |
| adjusted_pixel_size = max(1, pixel_size * scale_factor) | |
| if interpolation == "Nearest": | |
| resample_method = Image.NEAREST | |
| elif interpolation == "Bilinear": | |
| resample_method = Image.BILINEAR | |
| elif interpolation == "Bicubic": | |
| resample_method = Image.BICUBIC | |
| elif interpolation == "Lanczos": | |
| resample_method = Image.LANCZOS | |
| else: | |
| raise ValueError(f"未知的插值方法: {interpolation}") | |
| # 确保输出尺寸至少为1x1 | |
| small_width = max(1, width // adjusted_pixel_size) | |
| small_height = max(1, height // adjusted_pixel_size) | |
| small_img = img.resize( | |
| (small_width, small_height), | |
| resample=resample_method | |
| ) | |
| pixelated_img = small_img.resize( | |
| (width, height), | |
| resample=resample_method | |
| ) | |
| return pixelated_img | |
| def mosaic_pixelation(image, pixel_size): | |
| """ | |
| 使用马赛克方法对图像进行像素化。 | |
| 参数: | |
| - image: 输入的 PIL 图像对象 | |
| - pixel_size: 像素块大小 | |
| 返回: | |
| - 马赛克效果的 PIL 图像对象 | |
| """ | |
| img = image.convert("RGB") | |
| img_np = np.array(img) | |
| h, w, _ = img_np.shape | |
| # 使用比例调整 pixel_size,但确保至少为 1 | |
| scale_factor = max(1, min(w, h) // 512) # 根据需要调整基准值 | |
| adjusted_pixel_size = max(1, pixel_size * scale_factor) | |
| for y in range(0, h, adjusted_pixel_size): | |
| for x in range(0, w, adjusted_pixel_size): | |
| block = img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size] | |
| mean_color = block.mean(axis=(0, 1)).astype(int) | |
| img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size] = mean_color | |
| return Image.fromarray(img_np) | |
| def oil_paint_pixelation(image, pixel_size): | |
| """ | |
| 使用油画滤镜方法对图像进行像素化。 | |
| 参数: | |
| - image: 输入的 PIL 图像对象 | |
| - pixel_size: 像素块大小 | |
| 返回: | |
| - 油画滤镜效果的 PIL 图像对象 | |
| """ | |
| img = image.convert("RGB") | |
| img_np = np.array(img) | |
| h, w, _ = img_np.shape | |
| # 使用比例调整 pixel_size,但确保至少为 1 | |
| scale_factor = max(1, min(w, h) // 512) # 根据需要调整基准值 | |
| adjusted_pixel_size = max(1, pixel_size * scale_factor) | |
| for y in range(0, h, adjusted_pixel_size): | |
| for x in range(0, w, adjusted_pixel_size): | |
| block = img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size] | |
| block_colors = [tuple(color) for color in block.reshape(-1, 3)] | |
| most_common_color = Counter(block_colors).most_common(1)[0][0] | |
| img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size] = most_common_color | |
| return Image.fromarray(img_np) | |
| def hierarchical_pixelation(image, min_pixel_size, max_pixel_size): | |
| """ | |
| 使用层次像素化方法对图像进行像素化。 | |
| 参数: | |
| - image: 输入的 PIL 图像对象 | |
| - min_pixel_size: 最小像素块大小 | |
| - max_pixel_size: 最大像素块大小 | |
| 返回: | |
| - 层次像素化效果的 PIL 图像对象 | |
| """ | |
| img = image.convert("RGB") | |
| img_np = np.array(img) | |
| h, w, _ = img_np.shape | |
| # 使用比例调整 pixel_size,但确保至少为 1 | |
| scale_factor = max(1, min(w, h) // 512) # 根据需要调整基准值 | |
| adjusted_min_pixel_size = max(1, min_pixel_size * scale_factor) | |
| adjusted_max_pixel_size = max(1, max_pixel_size * scale_factor) | |
| # 防止步长为0 | |
| step = max((adjusted_max_pixel_size - adjusted_min_pixel_size) // max(w // adjusted_min_pixel_size, 1), 1) | |
| for pixel_size in range(adjusted_min_pixel_size, adjusted_max_pixel_size + 1, step): | |
| for y in range(0, h, pixel_size): | |
| for x in range(0, w, pixel_size): | |
| block = img_np[y:y + pixel_size, x:x + pixel_size] | |
| mean_color = block.mean(axis=(0, 1)).astype(int) | |
| img_np[y:y + pixel_size, x:x + pixel_size] = mean_color | |
| return Image.fromarray(img_np) | |