Spaces:
Paused
Paused
Update app.py
Browse filesadded complete version 4 code and changed py_modules part .
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
import time
|
|
@@ -9,7 +10,7 @@ import gradio as gr
|
|
| 9 |
import spaces
|
| 10 |
import torch
|
| 11 |
from PIL import Image
|
| 12 |
-
import pandas as pd #
|
| 13 |
|
| 14 |
from transformers import (
|
| 15 |
Qwen3VLForConditionalGeneration,
|
|
@@ -21,9 +22,9 @@ from transformers import (
|
|
| 21 |
from gradio.themes import Soft
|
| 22 |
from gradio.themes.utils import colors, fonts, sizes
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
#
|
| 26 |
-
#
|
| 27 |
|
| 28 |
|
| 29 |
def levenshtein(a: str, b: str) -> int:
|
|
@@ -54,24 +55,23 @@ def character_error_rate(pred: str, target: str) -> float:
|
|
| 54 |
return (distance / len(target)) * 100 if len(target) > 0 else 0.0
|
| 55 |
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
#
|
| 60 |
import importlib.util
|
| 61 |
from huggingface_hub import hf_hub_download
|
| 62 |
|
| 63 |
REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
PY_MODULES = {
|
| 67 |
-
"
|
| 68 |
-
"
|
| 69 |
"symspell_matcher.py": "SymSpellMatcher",
|
| 70 |
-
"
|
| 71 |
-
# 'Medibot_Drugs_Cleaned_Updated.xlsx' is data, not a module
|
| 72 |
}
|
| 73 |
|
| 74 |
-
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
| 75 |
|
| 76 |
|
| 77 |
def _dynamic_import(module_path: str, class_name: str):
|
|
@@ -81,40 +81,61 @@ def _dynamic_import(module_path: str, class_name: str):
|
|
| 81 |
return getattr(module, class_name)
|
| 82 |
|
| 83 |
|
| 84 |
-
# Load private classes and Excel dictionary (once at import time)
|
| 85 |
priv_classes: Dict[str, Any] = {}
|
| 86 |
drug_xlsx_path: Optional[str] = None
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
drug_xlsx_path = hf_hub_download(
|
| 97 |
repo_id=REPO_ID,
|
| 98 |
filename="Medibot_Drugs_Cleaned_Updated.xlsx",
|
| 99 |
token=HF_TOKEN,
|
|
|
|
| 100 |
)
|
| 101 |
print(f"[Private] Downloaded Excel at: {drug_xlsx_path}")
|
| 102 |
|
| 103 |
-
#
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
#
|
| 116 |
-
#
|
| 117 |
-
#
|
| 118 |
colors.steel_blue = colors.Color(
|
| 119 |
name="steel_blue",
|
| 120 |
c50="#EBF3F8",
|
|
@@ -194,9 +215,9 @@ css = """
|
|
| 194 |
#output-title h2 { font-size: 2.1em !important; }
|
| 195 |
"""
|
| 196 |
|
| 197 |
-
#
|
| 198 |
-
#
|
| 199 |
-
#
|
| 200 |
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "0")
|
| 201 |
print("CUDA_VISIBLE_DEVICES =", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 202 |
print("torch.__version__ =", torch.__version__)
|
|
@@ -214,9 +235,9 @@ if use_cuda:
|
|
| 214 |
DTYPE_FP16 = torch.float16 if use_cuda else torch.float32
|
| 215 |
DTYPE_BF16 = torch.bfloat16 if use_cuda else torch.float32
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
#
|
| 219 |
-
#
|
| 220 |
# 1) Chandra-OCR (Qwen3VL)
|
| 221 |
MODEL_ID_V = "datalab-to/chandra"
|
| 222 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
|
@@ -246,14 +267,15 @@ model_d = AutoModelForCausalLM.from_pretrained(
|
|
| 246 |
if not use_cuda:
|
| 247 |
model_d.to(device)
|
| 248 |
|
| 249 |
-
#
|
| 250 |
-
#
|
| 251 |
-
#
|
|
|
|
| 252 |
MAX_MAX_NEW_TOKENS = 4096
|
| 253 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 254 |
|
| 255 |
|
| 256 |
-
@spaces.GPU # you can add duration=... if
|
| 257 |
def generate_image(
|
| 258 |
model_name: str,
|
| 259 |
text: str,
|
|
@@ -266,19 +288,17 @@ def generate_image(
|
|
| 266 |
spell_algo: str,
|
| 267 |
):
|
| 268 |
"""
|
| 269 |
-
1) Stream OCR tokens to Raw output
|
| 270 |
-
2)
|
| 271 |
-
For Chandra-OCR
|
| 272 |
-
3) Apply selected spell-check
|
| 273 |
-
|
| 274 |
-
4) Markdown shows OCR text, NER list (if any), and spell-check top-5
|
| 275 |
-
suggestions with scores and CER.
|
| 276 |
"""
|
| 277 |
if image is None:
|
| 278 |
-
# Two outputs: raw textbox + markdown
|
| 279 |
yield "Please upload an image.", "Please upload an image."
|
| 280 |
return
|
| 281 |
|
|
|
|
| 282 |
if model_name == "Chandra-OCR":
|
| 283 |
processor, model = processor_v, model_v
|
| 284 |
elif model_name == "Dots.OCR":
|
|
@@ -287,7 +307,7 @@ def generate_image(
|
|
| 287 |
yield "Invalid model selected.", "Invalid model selected."
|
| 288 |
return
|
| 289 |
|
| 290 |
-
#
|
| 291 |
messages = [
|
| 292 |
{
|
| 293 |
"role": "user",
|
|
@@ -328,76 +348,104 @@ def generate_image(
|
|
| 328 |
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 329 |
thread.start()
|
| 330 |
|
| 331 |
-
# 1) Live OCR streaming
|
| 332 |
buffer = ""
|
| 333 |
for new_text in streamer:
|
| 334 |
buffer += new_text.replace("<|im_end|>", "")
|
| 335 |
time.sleep(0.01)
|
| 336 |
-
|
| 337 |
-
yield buffer, buffer
|
| 338 |
|
| 339 |
-
# Final raw text
|
| 340 |
final_ocr_text = buffer.strip()
|
| 341 |
|
| 342 |
-
#
|
| 343 |
-
# 2)
|
| 344 |
-
#
|
| 345 |
meds: List[str] = []
|
|
|
|
| 346 |
if model_name == "Dots.OCR":
|
|
|
|
| 347 |
try:
|
| 348 |
if "ClinicalNER" in priv_classes and HF_TOKEN is not None:
|
| 349 |
ClinicalNER = priv_classes["ClinicalNER"]
|
| 350 |
-
ner = ClinicalNER(token=HF_TOKEN)
|
| 351 |
ner_output = ner(final_ocr_text) or []
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
| 355 |
else:
|
| 356 |
-
print("[NER] ClinicalNER
|
| 357 |
except Exception as e:
|
| 358 |
print(f"[NER] Error running ClinicalNER: {e}")
|
| 359 |
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
print("[DEBUG] meds count:", len(meds))
|
| 366 |
print("[DEBUG] drug_xlsx_path in generate_image:", drug_xlsx_path)
|
| 367 |
|
| 368 |
-
#
|
| 369 |
-
# Build Markdown: OCR text +
|
| 370 |
-
#
|
| 371 |
md = "### Raw OCR Output\n"
|
| 372 |
md += "```\n" + (final_ocr_text or "(empty)") + "\n```\n"
|
| 373 |
|
| 374 |
-
md += "\n---\n###
|
| 375 |
if meds:
|
| 376 |
for m in meds:
|
| 377 |
md += f"- {m}\n"
|
| 378 |
else:
|
| 379 |
md += "- None detected\n"
|
| 380 |
|
| 381 |
-
#
|
| 382 |
-
#
|
| 383 |
-
#
|
| 384 |
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 385 |
corr: Dict[str, List] = {}
|
| 386 |
|
|
|
|
|
|
|
|
|
|
| 387 |
try:
|
| 388 |
if meds and drug_xlsx_path:
|
| 389 |
-
|
| 390 |
try:
|
| 391 |
-
|
| 392 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
except Exception as e:
|
| 394 |
-
print(f"[
|
|
|
|
| 395 |
|
| 396 |
-
|
| 397 |
if (
|
| 398 |
spell_algo == "TF-IDF + Phonetic"
|
| 399 |
and "TfidfPhoneticMatcher" in priv_classes
|
| 400 |
):
|
|
|
|
| 401 |
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 402 |
checker = Cls(
|
| 403 |
xlsx_path=drug_xlsx_path,
|
|
@@ -408,6 +456,7 @@ def generate_image(
|
|
| 408 |
corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 409 |
|
| 410 |
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
|
|
|
| 411 |
Cls = priv_classes["SymSpellMatcher"]
|
| 412 |
checker = Cls(
|
| 413 |
xlsx_path=drug_xlsx_path,
|
|
@@ -418,17 +467,27 @@ def generate_image(
|
|
| 418 |
corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 419 |
|
| 420 |
elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
|
|
|
| 421 |
Cls = priv_classes["RapidFuzzMatcher"]
|
| 422 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 423 |
corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
|
|
|
| 424 |
else:
|
| 425 |
-
spell_section +=
|
|
|
|
|
|
|
|
|
|
| 426 |
else:
|
| 427 |
if not meds:
|
| 428 |
spell_section += "- No medications extracted (empty med list).\n"
|
| 429 |
if not drug_xlsx_path:
|
| 430 |
-
spell_section +=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
except Exception as e:
|
|
|
|
| 432 |
spell_section += f"- Spell-check error: {e}\n"
|
| 433 |
|
| 434 |
# Format suggestions (top-5 per med, with scores + CER)
|
|
@@ -447,14 +506,13 @@ def generate_image(
|
|
| 447 |
|
| 448 |
final_md = md + spell_section
|
| 449 |
|
| 450 |
-
#
|
| 451 |
yield final_ocr_text, final_md
|
| 452 |
|
| 453 |
|
| 454 |
-
#
|
| 455 |
-
#
|
| 456 |
-
#
|
| 457 |
-
# IMPORTANT: examples must match the number of inputs (here: only image)
|
| 458 |
image_examples = [
|
| 459 |
["examples/3.jpg"],
|
| 460 |
["examples/1.jpg"],
|
|
@@ -477,7 +535,6 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 477 |
label="Example Images",
|
| 478 |
)
|
| 479 |
|
| 480 |
-
# Spell-check selection
|
| 481 |
spell_choice = gr.Radio(
|
| 482 |
choices=["TF-IDF + Phonetic", "SymSpell", "RapidFuzz"],
|
| 483 |
label="Select Spell-check Approach",
|
|
@@ -538,7 +595,7 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 538 |
value="Chandra-OCR",
|
| 539 |
)
|
| 540 |
|
| 541 |
-
# Hard-coded
|
| 542 |
query_state = gr.State(
|
| 543 |
"Extract medicine or drugs names along with dosage amount or quantity"
|
| 544 |
)
|
|
@@ -566,7 +623,577 @@ if __name__ == "__main__":
|
|
| 566 |
|
| 567 |
|
| 568 |
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
# import os
|
| 572 |
|
|
|
|
| 1 |
+
###################################### version 4 #########################################
|
| 2 |
+
|
| 3 |
|
| 4 |
import os
|
| 5 |
import time
|
|
|
|
| 10 |
import spaces
|
| 11 |
import torch
|
| 12 |
from PIL import Image
|
| 13 |
+
import pandas as pd # Excel read + debug
|
| 14 |
|
| 15 |
from transformers import (
|
| 16 |
Qwen3VLForConditionalGeneration,
|
|
|
|
| 22 |
from gradio.themes import Soft
|
| 23 |
from gradio.themes.utils import colors, fonts, sizes
|
| 24 |
|
| 25 |
+
# ============================================================
|
| 26 |
+
# Character Error Rate (CER)
|
| 27 |
+
# ============================================================
|
| 28 |
|
| 29 |
|
| 30 |
def levenshtein(a: str, b: str) -> int:
|
|
|
|
| 55 |
return (distance / len(target)) * 100 if len(target) > 0 else 0.0
|
| 56 |
|
| 57 |
|
| 58 |
+
# ============================================================
|
| 59 |
+
# Private repo: dynamic import + Excel download
|
| 60 |
+
# ============================================================
|
| 61 |
import importlib.util
|
| 62 |
from huggingface_hub import hf_hub_download
|
| 63 |
|
| 64 |
REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
| 65 |
|
| 66 |
+
# Filenames in the repo → class names they define
|
| 67 |
+
PY_MODULES: Dict[str, str] = {
|
| 68 |
+
"clinical_NER.py": "ClinicalNER",
|
| 69 |
+
"tf_idf_phonetic.py": "TfidfPhoneticMatcher",
|
| 70 |
"symspell_matcher.py": "SymSpellMatcher",
|
| 71 |
+
"rapid_fuzz_matcher.py": "RapidFuzzMatcher",
|
|
|
|
| 72 |
}
|
| 73 |
|
| 74 |
+
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") # must be set in Space secrets
|
| 75 |
|
| 76 |
|
| 77 |
def _dynamic_import(module_path: str, class_name: str):
|
|
|
|
| 81 |
return getattr(module, class_name)
|
| 82 |
|
| 83 |
|
|
|
|
| 84 |
priv_classes: Dict[str, Any] = {}
|
| 85 |
drug_xlsx_path: Optional[str] = None
|
| 86 |
+
BACKEND_INIT_ERROR: Optional[str] = None
|
| 87 |
+
|
| 88 |
+
print("[Private] HF_TOKEN present?:", HF_TOKEN is not None)
|
| 89 |
+
|
| 90 |
+
if HF_TOKEN is None:
|
| 91 |
+
BACKEND_INIT_ERROR = "HUGGINGFACE_TOKEN env var is not set in this Space."
|
| 92 |
+
print("[Private] WARNING:", BACKEND_INIT_ERROR)
|
| 93 |
+
else:
|
| 94 |
+
print(f"[Private] Using repo: {REPO_ID}")
|
| 95 |
+
|
| 96 |
+
# 1) Load python modules (best-effort: failure of one file will not block others)
|
| 97 |
+
for fname, cls_name in PY_MODULES.items():
|
| 98 |
+
try:
|
| 99 |
+
print(f"[Private] Downloading module file: {fname}")
|
| 100 |
+
path = hf_hub_download(
|
| 101 |
+
repo_id=REPO_ID,
|
| 102 |
+
filename=fname,
|
| 103 |
+
token=HF_TOKEN,
|
| 104 |
+
repo_type="model",
|
| 105 |
+
)
|
| 106 |
+
priv_classes[cls_name] = _dynamic_import(path, cls_name)
|
| 107 |
+
print(f"[Private] Loaded class {cls_name} from {fname}")
|
| 108 |
+
except Exception as e:
|
| 109 |
+
msg = f"Failed to load {fname}: {e}"
|
| 110 |
+
print("[Private]", msg)
|
| 111 |
+
BACKEND_INIT_ERROR = (BACKEND_INIT_ERROR or "") + f" | {msg}"
|
| 112 |
+
|
| 113 |
+
# 2) Load Excel dictionary
|
| 114 |
+
try:
|
| 115 |
+
print("[Private] Downloading Excel file: Medibot_Drugs_Cleaned_Updated.xlsx")
|
| 116 |
drug_xlsx_path = hf_hub_download(
|
| 117 |
repo_id=REPO_ID,
|
| 118 |
filename="Medibot_Drugs_Cleaned_Updated.xlsx",
|
| 119 |
token=HF_TOKEN,
|
| 120 |
+
repo_type="model",
|
| 121 |
)
|
| 122 |
print(f"[Private] Downloaded Excel at: {drug_xlsx_path}")
|
| 123 |
|
| 124 |
+
# Debug: verify read
|
| 125 |
+
df_debug = pd.read_excel(drug_xlsx_path, nrows=3)
|
| 126 |
+
print(
|
| 127 |
+
f"[Private] Excel loaded successfully. "
|
| 128 |
+
f"Shape={df_debug.shape}, cols={list(df_debug.columns)}"
|
| 129 |
+
)
|
| 130 |
+
except Exception as e:
|
| 131 |
+
msg = f"ERROR loading Excel: {e}"
|
| 132 |
+
print("[Private]", msg)
|
| 133 |
+
BACKEND_INIT_ERROR = (BACKEND_INIT_ERROR or "") + f" | {msg}"
|
| 134 |
+
drug_xlsx_path = None
|
| 135 |
+
|
| 136 |
+
# ============================================================
|
| 137 |
+
# THEME
|
| 138 |
+
# ============================================================
|
| 139 |
colors.steel_blue = colors.Color(
|
| 140 |
name="steel_blue",
|
| 141 |
c50="#EBF3F8",
|
|
|
|
| 215 |
#output-title h2 { font-size: 2.1em !important; }
|
| 216 |
"""
|
| 217 |
|
| 218 |
+
# ============================================================
|
| 219 |
+
# RUNTIME / DEVICE
|
| 220 |
+
# ============================================================
|
| 221 |
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "0")
|
| 222 |
print("CUDA_VISIBLE_DEVICES =", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 223 |
print("torch.__version__ =", torch.__version__)
|
|
|
|
| 235 |
DTYPE_FP16 = torch.float16 if use_cuda else torch.float32
|
| 236 |
DTYPE_BF16 = torch.bfloat16 if use_cuda else torch.float32
|
| 237 |
|
| 238 |
+
# ============================================================
|
| 239 |
+
# OCR MODELS: Chandra-OCR + Dots.OCR
|
| 240 |
+
# ============================================================
|
| 241 |
# 1) Chandra-OCR (Qwen3VL)
|
| 242 |
MODEL_ID_V = "datalab-to/chandra"
|
| 243 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
|
|
|
| 267 |
if not use_cuda:
|
| 268 |
model_d.to(device)
|
| 269 |
|
| 270 |
+
# ============================================================
|
| 271 |
+
# GENERATION (OCR → Med extraction → Spell-check + CER)
|
| 272 |
+
# ClinicalNER is used ONLY for Dots.OCR.
|
| 273 |
+
# ============================================================
|
| 274 |
MAX_MAX_NEW_TOKENS = 4096
|
| 275 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 276 |
|
| 277 |
|
| 278 |
+
@spaces.GPU # you can add duration=... if you hit timeouts
|
| 279 |
def generate_image(
|
| 280 |
model_name: str,
|
| 281 |
text: str,
|
|
|
|
| 288 |
spell_algo: str,
|
| 289 |
):
|
| 290 |
"""
|
| 291 |
+
1) Stream OCR tokens to Raw output.
|
| 292 |
+
2) For Dots.OCR: run ClinicalNER → meds list (with fallback to line-based).
|
| 293 |
+
For Chandra-OCR: DO NOT call ClinicalNER; meds from OCR lines only.
|
| 294 |
+
3) Apply selected spell-check algorithm on meds using Excel dictionary.
|
| 295 |
+
4) Compute CER for each suggestion and display in markdown.
|
|
|
|
|
|
|
| 296 |
"""
|
| 297 |
if image is None:
|
|
|
|
| 298 |
yield "Please upload an image.", "Please upload an image."
|
| 299 |
return
|
| 300 |
|
| 301 |
+
# Choose processor/model
|
| 302 |
if model_name == "Chandra-OCR":
|
| 303 |
processor, model = processor_v, model_v
|
| 304 |
elif model_name == "Dots.OCR":
|
|
|
|
| 307 |
yield "Invalid model selected.", "Invalid model selected."
|
| 308 |
return
|
| 309 |
|
| 310 |
+
# Prompt (text is provided via gr.State)
|
| 311 |
messages = [
|
| 312 |
{
|
| 313 |
"role": "user",
|
|
|
|
| 348 |
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 349 |
thread.start()
|
| 350 |
|
| 351 |
+
# 1) Live OCR streaming : show raw text while generating
|
| 352 |
buffer = ""
|
| 353 |
for new_text in streamer:
|
| 354 |
buffer += new_text.replace("<|im_end|>", "")
|
| 355 |
time.sleep(0.01)
|
| 356 |
+
yield buffer, buffer # two outputs: raw + md (same during stream)
|
|
|
|
| 357 |
|
|
|
|
| 358 |
final_ocr_text = buffer.strip()
|
| 359 |
|
| 360 |
+
# --------------------------------------------------------
|
| 361 |
+
# 2) Medications extraction
|
| 362 |
+
# --------------------------------------------------------
|
| 363 |
meds: List[str] = []
|
| 364 |
+
|
| 365 |
if model_name == "Dots.OCR":
|
| 366 |
+
# ClinicalNER ONLY for Dots.OCR
|
| 367 |
try:
|
| 368 |
if "ClinicalNER" in priv_classes and HF_TOKEN is not None:
|
| 369 |
ClinicalNER = priv_classes["ClinicalNER"]
|
| 370 |
+
ner = ClinicalNER(token=HF_TOKEN)
|
| 371 |
ner_output = ner(final_ocr_text) or []
|
| 372 |
+
meds = [
|
| 373 |
+
m.strip()
|
| 374 |
+
for m in ner_output
|
| 375 |
+
if isinstance(m, str) and m.strip()
|
| 376 |
+
]
|
| 377 |
+
print("[NER] (Dots.OCR) ClinicalNER meds:", meds)
|
| 378 |
else:
|
| 379 |
+
print("[NER] ClinicalNER unavailable or missing HF token; skipping.")
|
| 380 |
except Exception as e:
|
| 381 |
print(f"[NER] Error running ClinicalNER: {e}")
|
| 382 |
|
| 383 |
+
# Fallback if ClinicalNER returns nothing
|
| 384 |
+
if not meds:
|
| 385 |
+
meds = [
|
| 386 |
+
line.strip()
|
| 387 |
+
for line in final_ocr_text.splitlines()
|
| 388 |
+
if line.strip()
|
| 389 |
+
]
|
| 390 |
+
print("[NER] (Dots.OCR) Fallback to lines, count:", len(meds))
|
| 391 |
+
|
| 392 |
+
elif model_name == "Chandra-OCR":
|
| 393 |
+
# NO ClinicalNER for Chandra; just use text lines
|
| 394 |
+
meds = [
|
| 395 |
+
line.strip()
|
| 396 |
+
for line in final_ocr_text.splitlines()
|
| 397 |
+
if line.strip()
|
| 398 |
+
]
|
| 399 |
+
print("[NER] (Chandra-OCR) Line-based meds only, count:", len(meds))
|
| 400 |
|
| 401 |
print("[DEBUG] meds count:", len(meds))
|
| 402 |
print("[DEBUG] drug_xlsx_path in generate_image:", drug_xlsx_path)
|
| 403 |
|
| 404 |
+
# --------------------------------------------------------
|
| 405 |
+
# 3) Build Markdown base: OCR text + med list
|
| 406 |
+
# --------------------------------------------------------
|
| 407 |
md = "### Raw OCR Output\n"
|
| 408 |
md += "```\n" + (final_ocr_text or "(empty)") + "\n```\n"
|
| 409 |
|
| 410 |
+
md += "\n---\n### Medications (extracted)\n"
|
| 411 |
if meds:
|
| 412 |
for m in meds:
|
| 413 |
md += f"- {m}\n"
|
| 414 |
else:
|
| 415 |
md += "- None detected\n"
|
| 416 |
|
| 417 |
+
# --------------------------------------------------------
|
| 418 |
+
# 4) Spell-check (med list) with CER
|
| 419 |
+
# --------------------------------------------------------
|
| 420 |
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 421 |
corr: Dict[str, List] = {}
|
| 422 |
|
| 423 |
+
if BACKEND_INIT_ERROR:
|
| 424 |
+
spell_section += f"- [DEBUG] Backend init error: {BACKEND_INIT_ERROR}\n"
|
| 425 |
+
|
| 426 |
try:
|
| 427 |
if meds and drug_xlsx_path:
|
| 428 |
+
# Optional Excel debug read
|
| 429 |
try:
|
| 430 |
+
df_dbg = pd.read_excel(drug_xlsx_path, nrows=5)
|
| 431 |
+
print(
|
| 432 |
+
f"[Spell DEBUG] Excel read OK: path={drug_xlsx_path}, "
|
| 433 |
+
f"shape={df_dbg.shape}, cols={list(df_dbg.columns)}"
|
| 434 |
+
)
|
| 435 |
+
spell_section += (
|
| 436 |
+
f"- [DEBUG] Excel read OK; shape={df_dbg.shape}, "
|
| 437 |
+
f"cols={list(df_dbg.columns)}\n"
|
| 438 |
+
)
|
| 439 |
except Exception as e:
|
| 440 |
+
print(f"[Spell DEBUG] ERROR reading Excel in generate_image: {e}")
|
| 441 |
+
spell_section += f"- [DEBUG] Excel read error: {e}\n"
|
| 442 |
|
| 443 |
+
# Pick matcher based on spell_algo
|
| 444 |
if (
|
| 445 |
spell_algo == "TF-IDF + Phonetic"
|
| 446 |
and "TfidfPhoneticMatcher" in priv_classes
|
| 447 |
):
|
| 448 |
+
print("[Spell DEBUG] Using TfidfPhoneticMatcher")
|
| 449 |
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 450 |
checker = Cls(
|
| 451 |
xlsx_path=drug_xlsx_path,
|
|
|
|
| 456 |
corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 457 |
|
| 458 |
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 459 |
+
print("[Spell DEBUG] Using SymSpellMatcher")
|
| 460 |
Cls = priv_classes["SymSpellMatcher"]
|
| 461 |
checker = Cls(
|
| 462 |
xlsx_path=drug_xlsx_path,
|
|
|
|
| 467 |
corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 468 |
|
| 469 |
elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 470 |
+
print("[Spell DEBUG] Using RapidFuzzMatcher")
|
| 471 |
Cls = priv_classes["RapidFuzzMatcher"]
|
| 472 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 473 |
corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
| 474 |
+
|
| 475 |
else:
|
| 476 |
+
spell_section += (
|
| 477 |
+
"- Spell-check backend unavailable "
|
| 478 |
+
"(no matcher class for selected algorithm).\n"
|
| 479 |
+
)
|
| 480 |
else:
|
| 481 |
if not meds:
|
| 482 |
spell_section += "- No medications extracted (empty med list).\n"
|
| 483 |
if not drug_xlsx_path:
|
| 484 |
+
spell_section += (
|
| 485 |
+
"- Drug Excel dictionary path missing "
|
| 486 |
+
"(drug_xlsx_path is None).\n"
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
except Exception as e:
|
| 490 |
+
print(f"[Spell DEBUG] Spell-check error: {e}")
|
| 491 |
spell_section += f"- Spell-check error: {e}\n"
|
| 492 |
|
| 493 |
# Format suggestions (top-5 per med, with scores + CER)
|
|
|
|
| 506 |
|
| 507 |
final_md = md + spell_section
|
| 508 |
|
| 509 |
+
# Final yield: raw OCR text + full markdown
|
| 510 |
yield final_ocr_text, final_md
|
| 511 |
|
| 512 |
|
| 513 |
+
# ============================================================
|
| 514 |
+
# UI
|
| 515 |
+
# ============================================================
|
|
|
|
| 516 |
image_examples = [
|
| 517 |
["examples/3.jpg"],
|
| 518 |
["examples/1.jpg"],
|
|
|
|
| 535 |
label="Example Images",
|
| 536 |
)
|
| 537 |
|
|
|
|
| 538 |
spell_choice = gr.Radio(
|
| 539 |
choices=["TF-IDF + Phonetic", "SymSpell", "RapidFuzz"],
|
| 540 |
label="Select Spell-check Approach",
|
|
|
|
| 595 |
value="Chandra-OCR",
|
| 596 |
)
|
| 597 |
|
| 598 |
+
# Hard-coded query text (passed into the 'text' parameter)
|
| 599 |
query_state = gr.State(
|
| 600 |
"Extract medicine or drugs names along with dosage amount or quantity"
|
| 601 |
)
|
|
|
|
| 623 |
|
| 624 |
|
| 625 |
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
################################### version 3 ########################################
|
| 629 |
+
|
| 630 |
+
# import os
|
| 631 |
+
# import time
|
| 632 |
+
# from threading import Thread
|
| 633 |
+
# from typing import Iterable, Dict, Any, Optional, List
|
| 634 |
+
|
| 635 |
+
# import gradio as gr
|
| 636 |
+
# import spaces
|
| 637 |
+
# import torch
|
| 638 |
+
# from PIL import Image
|
| 639 |
+
# import pandas as pd # for reading Excel and debugging
|
| 640 |
+
|
| 641 |
+
# from transformers import (
|
| 642 |
+
# Qwen3VLForConditionalGeneration,
|
| 643 |
+
# AutoModelForCausalLM,
|
| 644 |
+
# AutoProcessor,
|
| 645 |
+
# TextIteratorStreamer,
|
| 646 |
+
# )
|
| 647 |
+
|
| 648 |
+
# from gradio.themes import Soft
|
| 649 |
+
# from gradio.themes.utils import colors, fonts, sizes
|
| 650 |
+
|
| 651 |
+
# # -----------------------------
|
| 652 |
+
# # Character Error Rate (CER)
|
| 653 |
+
# # -----------------------------
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
# def levenshtein(a: str, b: str) -> int:
|
| 657 |
+
# """Levenshtein distance to calculate CER."""
|
| 658 |
+
# a, b = a.lower(), b.lower()
|
| 659 |
+
# if a == b:
|
| 660 |
+
# return 0
|
| 661 |
+
# if not a:
|
| 662 |
+
# return len(b)
|
| 663 |
+
# if not b:
|
| 664 |
+
# return len(a)
|
| 665 |
+
# dp = list(range(len(b) + 1))
|
| 666 |
+
# for i, ca in enumerate(a, 1):
|
| 667 |
+
# prev = dp[0]
|
| 668 |
+
# dp[0] = i
|
| 669 |
+
# for j, cb in enumerate(b, 1):
|
| 670 |
+
# cur = dp[j]
|
| 671 |
+
# cost = 0 if ca == cb else 1
|
| 672 |
+
# dp[j] = min(dp[j] + 1, dp[j - 1] + 1, prev + cost)
|
| 673 |
+
# prev = cur
|
| 674 |
+
# return dp[-1]
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
# def character_error_rate(pred: str, target: str) -> float:
|
| 678 |
+
# """Calculate the Character Error Rate (CER) in percent."""
|
| 679 |
+
# target = target or ""
|
| 680 |
+
# distance = levenshtein(pred, target)
|
| 681 |
+
# return (distance / len(target)) * 100 if len(target) > 0 else 0.0
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
# # -----------------------------
|
| 685 |
+
# # Private repo: dynamic import
|
| 686 |
+
# # -----------------------------
|
| 687 |
+
# import importlib.util
|
| 688 |
+
# from huggingface_hub import hf_hub_download
|
| 689 |
+
|
| 690 |
+
# REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
| 691 |
+
|
| 692 |
+
# # Map filenames to exported class names
|
| 693 |
+
# PY_MODULES = {
|
| 694 |
+
# "ner.py": "ClinicalNER", # NER is only applied for Dots.OCR output
|
| 695 |
+
# "tfidf_phonetic.py": "TfidfPhoneticMatcher",
|
| 696 |
+
# "symspell_matcher.py": "SymSpellMatcher",
|
| 697 |
+
# "rapidfuzz_matcher.py": "RapidFuzzMatcher",
|
| 698 |
+
# # 'Medibot_Drugs_Cleaned_Updated.xlsx' is data, not a module
|
| 699 |
+
# }
|
| 700 |
+
|
| 701 |
+
# HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
# def _dynamic_import(module_path: str, class_name: str):
|
| 705 |
+
# spec = importlib.util.spec_from_file_location(class_name, module_path)
|
| 706 |
+
# module = importlib.util.module_from_spec(spec)
|
| 707 |
+
# spec.loader.exec_module(module) # type: ignore
|
| 708 |
+
# return getattr(module, class_name)
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
# # Load private classes and Excel dictionary (once at import time)
|
| 712 |
+
# priv_classes: Dict[str, Any] = {}
|
| 713 |
+
# drug_xlsx_path: Optional[str] = None
|
| 714 |
+
# try:
|
| 715 |
+
# if HF_TOKEN is None:
|
| 716 |
+
# print("[Private] WARNING: HUGGINGFACE_TOKEN not set; NER/Spell-check will be unavailable.")
|
| 717 |
+
# else:
|
| 718 |
+
# for fname, cls in PY_MODULES.items():
|
| 719 |
+
# path = hf_hub_download(repo_id=REPO_ID, filename=fname, token=HF_TOKEN)
|
| 720 |
+
# if cls:
|
| 721 |
+
# priv_classes[cls] = _dynamic_import(path, cls)
|
| 722 |
+
# print(f"[Private] Loaded class: {cls} from {fname}")
|
| 723 |
+
# drug_xlsx_path = hf_hub_download(
|
| 724 |
+
# repo_id=REPO_ID,
|
| 725 |
+
# filename="Medibot_Drugs_Cleaned_Updated.xlsx",
|
| 726 |
+
# token=HF_TOKEN,
|
| 727 |
+
# )
|
| 728 |
+
# print(f"[Private] Downloaded Excel at: {drug_xlsx_path}")
|
| 729 |
+
|
| 730 |
+
# # DEBUG: read Excel once and print its shape
|
| 731 |
+
# try:
|
| 732 |
+
# df_debug = pd.read_excel(drug_xlsx_path)
|
| 733 |
+
# print(f"[Private] Excel loaded successfully. Shape: {df_debug.shape}")
|
| 734 |
+
# except Exception as e:
|
| 735 |
+
# print(f"[Private] ERROR reading Excel for debug: {e}")
|
| 736 |
+
|
| 737 |
+
# except Exception as e:
|
| 738 |
+
# print(f"[Private] ERROR loading private backend: {e}")
|
| 739 |
+
# priv_classes = {}
|
| 740 |
+
# drug_xlsx_path = None
|
| 741 |
+
|
| 742 |
+
# # ----------------------------
|
| 743 |
+
# # THEME
|
| 744 |
+
# # ----------------------------
|
| 745 |
+
# colors.steel_blue = colors.Color(
|
| 746 |
+
# name="steel_blue",
|
| 747 |
+
# c50="#EBF3F8",
|
| 748 |
+
# c100="#D3E5F0",
|
| 749 |
+
# c200="#A8CCE1",
|
| 750 |
+
# c300="#7DB3D2",
|
| 751 |
+
# c400="#529AC3",
|
| 752 |
+
# c500="#4682B4",
|
| 753 |
+
# c600="#3E72A0",
|
| 754 |
+
# c700="#36638C",
|
| 755 |
+
# c800="#2E5378",
|
| 756 |
+
# c900="#264364",
|
| 757 |
+
# c950="#1E3450",
|
| 758 |
+
# )
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
# class SteelBlueTheme(Soft):
|
| 762 |
+
# def __init__(
|
| 763 |
+
# self,
|
| 764 |
+
# *,
|
| 765 |
+
# primary_hue: colors.Color | str = colors.gray,
|
| 766 |
+
# secondary_hue: colors.Color | str = colors.steel_blue,
|
| 767 |
+
# neutral_hue: colors.Color | str = colors.slate,
|
| 768 |
+
# text_size: sizes.Size | str = sizes.text_lg,
|
| 769 |
+
# font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 770 |
+
# fonts.GoogleFont("Outfit"),
|
| 771 |
+
# "Arial",
|
| 772 |
+
# "sans-serif",
|
| 773 |
+
# ),
|
| 774 |
+
# font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 775 |
+
# fonts.GoogleFont("IBM Plex Mono"),
|
| 776 |
+
# "ui-monospace",
|
| 777 |
+
# "monospace",
|
| 778 |
+
# ),
|
| 779 |
+
# ):
|
| 780 |
+
# super().__init__(
|
| 781 |
+
# primary_hue=primary_hue,
|
| 782 |
+
# secondary_hue=secondary_hue,
|
| 783 |
+
# neutral_hue=neutral_hue,
|
| 784 |
+
# text_size=text_size,
|
| 785 |
+
# font=font,
|
| 786 |
+
# font_mono=font_mono,
|
| 787 |
+
# )
|
| 788 |
+
# super().set(
|
| 789 |
+
# background_fill_primary="*primary_50",
|
| 790 |
+
# background_fill_primary_dark="*primary_900",
|
| 791 |
+
# body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 792 |
+
# body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 793 |
+
# button_primary_text_color="white",
|
| 794 |
+
# button_primary_text_color_hover="white",
|
| 795 |
+
# button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 796 |
+
# button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 797 |
+
# button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 798 |
+
# button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 799 |
+
# button_secondary_text_color="black",
|
| 800 |
+
# button_secondary_text_color_hover="white",
|
| 801 |
+
# button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 802 |
+
# button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 803 |
+
# button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 804 |
+
# button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 805 |
+
# slider_color="*secondary_500",
|
| 806 |
+
# slider_color_dark="*secondary_600",
|
| 807 |
+
# block_title_text_weight="600",
|
| 808 |
+
# block_border_width="3px",
|
| 809 |
+
# block_shadow="*shadow_drop_lg",
|
| 810 |
+
# button_primary_shadow="*shadow_drop_lg",
|
| 811 |
+
# button_large_padding="11px",
|
| 812 |
+
# color_accent_soft="*primary_100",
|
| 813 |
+
# block_label_background_fill="*primary_200",
|
| 814 |
+
# )
|
| 815 |
+
|
| 816 |
+
|
| 817 |
+
# steel_blue_theme = SteelBlueTheme()
|
| 818 |
+
|
| 819 |
+
# css = """
|
| 820 |
+
# #main-title h1 { font-size: 2.3em !important; }
|
| 821 |
+
# #output-title h2 { font-size: 2.1em !important; }
|
| 822 |
+
# """
|
| 823 |
+
|
| 824 |
+
# # ----------------------------
|
| 825 |
+
# # RUNTIME / DEVICE
|
| 826 |
+
# # ----------------------------
|
| 827 |
+
# os.environ.setdefault("CUDA_VISIBLE_DEVICES", "0")
|
| 828 |
+
# print("CUDA_VISIBLE_DEVICES =", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 829 |
+
# print("torch.__version__ =", torch.__version__)
|
| 830 |
+
# print("torch.version.cuda =", torch.version.cuda)
|
| 831 |
+
# print("cuda available =", torch.cuda.is_available())
|
| 832 |
+
# print("cuda device count =", torch.cuda.device_count())
|
| 833 |
+
# if torch.cuda.is_available():
|
| 834 |
+
# print("using device =", torch.cuda.get_device_name(0))
|
| 835 |
+
|
| 836 |
+
# use_cuda = torch.cuda.is_available()
|
| 837 |
+
# device = torch.device("cuda:0" if use_cuda else "cpu")
|
| 838 |
+
# if use_cuda:
|
| 839 |
+
# torch.backends.cudnn.benchmark = True
|
| 840 |
+
|
| 841 |
+
# DTYPE_FP16 = torch.float16 if use_cuda else torch.float32
|
| 842 |
+
# DTYPE_BF16 = torch.bfloat16 if use_cuda else torch.float32
|
| 843 |
+
|
| 844 |
+
# # ----------------------------
|
| 845 |
+
# # OCR MODELS: Chandra-OCR + Dots.OCR
|
| 846 |
+
# # ----------------------------
|
| 847 |
+
# # 1) Chandra-OCR (Qwen3VL)
|
| 848 |
+
# MODEL_ID_V = "datalab-to/chandra"
|
| 849 |
+
# processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 850 |
+
# model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 851 |
+
# MODEL_ID_V, trust_remote_code=True, torch_dtype=DTYPE_FP16
|
| 852 |
+
# ).to(device).eval()
|
| 853 |
+
|
| 854 |
+
# # 2) Dots.OCR (flash_attn2 if available, else SDPA)
|
| 855 |
+
# MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 856 |
+
# processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
| 857 |
+
# attn_impl = "sdpa"
|
| 858 |
+
# try:
|
| 859 |
+
# import flash_attn # noqa: F401
|
| 860 |
+
|
| 861 |
+
# if use_cuda:
|
| 862 |
+
# attn_impl = "flash_attention_2"
|
| 863 |
+
# except Exception:
|
| 864 |
+
# attn_impl = "sdpa"
|
| 865 |
+
|
| 866 |
+
# model_d = AutoModelForCausalLM.from_pretrained(
|
| 867 |
+
# MODEL_PATH_D,
|
| 868 |
+
# attn_implementation=attn_impl,
|
| 869 |
+
# torch_dtype=DTYPE_BF16,
|
| 870 |
+
# device_map="auto" if use_cuda else None,
|
| 871 |
+
# trust_remote_code=True,
|
| 872 |
+
# ).eval()
|
| 873 |
+
# if not use_cuda:
|
| 874 |
+
# model_d.to(device)
|
| 875 |
+
|
| 876 |
+
# # ----------------------------
|
| 877 |
+
# # GENERATION (OCR → NER (Dots only) → Spell-check + CER)
|
| 878 |
+
# # ----------------------------
|
| 879 |
+
# MAX_MAX_NEW_TOKENS = 4096
|
| 880 |
+
# DEFAULT_MAX_NEW_TOKENS = 2048
|
| 881 |
+
|
| 882 |
+
|
| 883 |
+
# @spaces.GPU # you can add duration=... if needed, e.g. @spaces.GPU(duration=240)
|
| 884 |
+
# def generate_image(
|
| 885 |
+
# model_name: str,
|
| 886 |
+
# text: str,
|
| 887 |
+
# image: Image.Image,
|
| 888 |
+
# max_new_tokens: int,
|
| 889 |
+
# temperature: float,
|
| 890 |
+
# top_p: float,
|
| 891 |
+
# top_k: int,
|
| 892 |
+
# repetition_penalty: float,
|
| 893 |
+
# spell_algo: str,
|
| 894 |
+
# ):
|
| 895 |
+
# """
|
| 896 |
+
# 1) Stream OCR tokens to Raw output (unchanged).
|
| 897 |
+
# 2) If model_name == 'Dots.OCR', run ClinicalNER → list[str] meds.
|
| 898 |
+
# For Chandra-OCR, skip NER.
|
| 899 |
+
# 3) Apply selected spell-check (TF-IDF+Phonetic / SymSpell / RapidFuzz)
|
| 900 |
+
# using Excel dict, and compute CER for each suggestion.
|
| 901 |
+
# 4) Markdown shows OCR text, NER list (if any), and spell-check top-5
|
| 902 |
+
# suggestions with scores and CER.
|
| 903 |
+
# """
|
| 904 |
+
# if image is None:
|
| 905 |
+
# # Two outputs: raw textbox + markdown
|
| 906 |
+
# yield "Please upload an image.", "Please upload an image."
|
| 907 |
+
# return
|
| 908 |
+
|
| 909 |
+
# if model_name == "Chandra-OCR":
|
| 910 |
+
# processor, model = processor_v, model_v
|
| 911 |
+
# elif model_name == "Dots.OCR":
|
| 912 |
+
# processor, model = processor_d, model_d
|
| 913 |
+
# else:
|
| 914 |
+
# yield "Invalid model selected.", "Invalid model selected."
|
| 915 |
+
# return
|
| 916 |
+
|
| 917 |
+
# # Build prompt from text parameter (kept via gr.State)
|
| 918 |
+
# messages = [
|
| 919 |
+
# {
|
| 920 |
+
# "role": "user",
|
| 921 |
+
# "content": [
|
| 922 |
+
# {"type": "image"},
|
| 923 |
+
# {"type": "text", "text": text},
|
| 924 |
+
# ],
|
| 925 |
+
# }
|
| 926 |
+
# ]
|
| 927 |
+
# prompt_full = processor.apply_chat_template(
|
| 928 |
+
# messages, tokenize=False, add_generation_prompt=True
|
| 929 |
+
# )
|
| 930 |
+
|
| 931 |
+
# # Preprocess
|
| 932 |
+
# inputs = processor(
|
| 933 |
+
# text=[prompt_full], images=[image], return_tensors="pt", padding=True
|
| 934 |
+
# )
|
| 935 |
+
# inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 936 |
+
|
| 937 |
+
# # Streamer
|
| 938 |
+
# tokenizer = getattr(processor, "tokenizer", None) or processor
|
| 939 |
+
# streamer = TextIteratorStreamer(
|
| 940 |
+
# tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 941 |
+
# )
|
| 942 |
+
|
| 943 |
+
# gen_kwargs = dict(
|
| 944 |
+
# **inputs,
|
| 945 |
+
# streamer=streamer,
|
| 946 |
+
# max_new_tokens=max_new_tokens,
|
| 947 |
+
# do_sample=True,
|
| 948 |
+
# temperature=temperature,
|
| 949 |
+
# top_p=top_p,
|
| 950 |
+
# top_k=top_k,
|
| 951 |
+
# repetition_penalty=repetition_penalty,
|
| 952 |
+
# )
|
| 953 |
+
|
| 954 |
+
# # Start generation in background thread
|
| 955 |
+
# thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 956 |
+
# thread.start()
|
| 957 |
+
|
| 958 |
+
# # 1) Live OCR streaming to Raw (and mirror to Markdown during stream)
|
| 959 |
+
# buffer = ""
|
| 960 |
+
# for new_text in streamer:
|
| 961 |
+
# buffer += new_text.replace("<|im_end|>", "")
|
| 962 |
+
# time.sleep(0.01)
|
| 963 |
+
# # During streaming, just show the raw text in both components
|
| 964 |
+
# yield buffer, buffer
|
| 965 |
+
|
| 966 |
+
# # Final raw text
|
| 967 |
+
# final_ocr_text = buffer.strip()
|
| 968 |
+
|
| 969 |
+
# # -------------------------
|
| 970 |
+
# # 2) Clinical NER (Dots.OCR only)
|
| 971 |
+
# # -------------------------
|
| 972 |
+
# meds: List[str] = []
|
| 973 |
+
# if model_name == "Dots.OCR":
|
| 974 |
+
# try:
|
| 975 |
+
# if "ClinicalNER" in priv_classes and HF_TOKEN is not None:
|
| 976 |
+
# ClinicalNER = priv_classes["ClinicalNER"]
|
| 977 |
+
# ner = ClinicalNER(token=HF_TOKEN) # model_id can be passed if needed
|
| 978 |
+
# ner_output = ner(final_ocr_text) or []
|
| 979 |
+
# # Expecting list[str]; be robust:
|
| 980 |
+
# meds = [m.strip() for m in ner_output if isinstance(m, str) and m.strip()]
|
| 981 |
+
# print("[NER] Extracted meds (from ClinicalNER):", meds)
|
| 982 |
+
# else:
|
| 983 |
+
# print("[NER] ClinicalNER not available or no HF token.")
|
| 984 |
+
# except Exception as e:
|
| 985 |
+
# print(f"[NER] Error running ClinicalNER: {e}")
|
| 986 |
+
|
| 987 |
+
# # Fallback: if no meds found (or Chandra-OCR), derive meds from OCR lines
|
| 988 |
+
# if not meds:
|
| 989 |
+
# meds = [line.strip() for line in final_ocr_text.splitlines() if line.strip()]
|
| 990 |
+
# print("[NER] Using line-based meds fallback, count:", len(meds))
|
| 991 |
+
|
| 992 |
+
# print("[DEBUG] meds count:", len(meds))
|
| 993 |
+
# print("[DEBUG] drug_xlsx_path in generate_image:", drug_xlsx_path)
|
| 994 |
+
|
| 995 |
+
# # -------------------------
|
| 996 |
+
# # Build Markdown: OCR text + NER section
|
| 997 |
+
# # -------------------------
|
| 998 |
+
# md = "### Raw OCR Output\n"
|
| 999 |
+
# md += "```\n" + (final_ocr_text or "(empty)") + "\n```\n"
|
| 1000 |
+
|
| 1001 |
+
# md += "\n---\n### Clinical NER (Medications)\n"
|
| 1002 |
+
# if meds:
|
| 1003 |
+
# for m in meds:
|
| 1004 |
+
# md += f"- {m}\n"
|
| 1005 |
+
# else:
|
| 1006 |
+
# md += "- None detected\n"
|
| 1007 |
+
|
| 1008 |
+
# # -------------------------
|
| 1009 |
+
# # 3) Spell-check (med list) with CER
|
| 1010 |
+
# # -------------------------
|
| 1011 |
+
# spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 1012 |
+
# corr: Dict[str, List] = {}
|
| 1013 |
+
|
| 1014 |
+
# try:
|
| 1015 |
+
# if meds and drug_xlsx_path:
|
| 1016 |
+
|
| 1017 |
+
# try:
|
| 1018 |
+
# df_debug = pd.read_excel(drug_xlsx_path)
|
| 1019 |
+
# print(f"[Private] Excel loaded successfully. Shape: {df_debug.shape}")
|
| 1020 |
+
# except Exception as e:
|
| 1021 |
+
# print(f"[Private] ERROR reading Excel for debug: {e}")
|
| 1022 |
+
|
| 1023 |
+
|
| 1024 |
+
# if (
|
| 1025 |
+
# spell_algo == "TF-IDF + Phonetic"
|
| 1026 |
+
# and "TfidfPhoneticMatcher" in priv_classes
|
| 1027 |
+
# ):
|
| 1028 |
+
# Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 1029 |
+
# checker = Cls(
|
| 1030 |
+
# xlsx_path=drug_xlsx_path,
|
| 1031 |
+
# column="Combined_Drugs",
|
| 1032 |
+
# ngram_size=3,
|
| 1033 |
+
# phonetic_weight=0.4,
|
| 1034 |
+
# )
|
| 1035 |
+
# corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 1036 |
+
|
| 1037 |
+
# elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 1038 |
+
# Cls = priv_classes["SymSpellMatcher"]
|
| 1039 |
+
# checker = Cls(
|
| 1040 |
+
# xlsx_path=drug_xlsx_path,
|
| 1041 |
+
# column="Combined_Drugs",
|
| 1042 |
+
# max_edit=2,
|
| 1043 |
+
# prefix_len=7,
|
| 1044 |
+
# )
|
| 1045 |
+
# corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 1046 |
+
|
| 1047 |
+
# elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 1048 |
+
# Cls = priv_classes["RapidFuzzMatcher"]
|
| 1049 |
+
# checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 1050 |
+
# corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
| 1051 |
+
# else:
|
| 1052 |
+
# spell_section += "- Spell-check backend unavailable (no matcher class).\n"
|
| 1053 |
+
# else:
|
| 1054 |
+
# if not meds:
|
| 1055 |
+
# spell_section += "- No medications extracted (empty med list).\n"
|
| 1056 |
+
# if not drug_xlsx_path:
|
| 1057 |
+
# spell_section += "- Drug Excel dictionary path missing (drug_xlsx_path is None).\n"
|
| 1058 |
+
# except Exception as e:
|
| 1059 |
+
# spell_section += f"- Spell-check error: {e}\n"
|
| 1060 |
+
|
| 1061 |
+
# # Format suggestions (top-5 per med, with scores + CER)
|
| 1062 |
+
# if corr:
|
| 1063 |
+
# for raw in meds:
|
| 1064 |
+
# suggestions = corr.get(raw, [])
|
| 1065 |
+
# if suggestions:
|
| 1066 |
+
# spell_section += f"- **{raw}**\n"
|
| 1067 |
+
# for cand, score in suggestions:
|
| 1068 |
+
# cer = character_error_rate(cand, raw)
|
| 1069 |
+
# spell_section += (
|
| 1070 |
+
# f" - {cand} (score={score:.3f}, CER={cer:.3f}%)\n"
|
| 1071 |
+
# )
|
| 1072 |
+
# else:
|
| 1073 |
+
# spell_section += f"- **{raw}**\n - (no suggestions)\n"
|
| 1074 |
+
|
| 1075 |
+
# final_md = md + spell_section
|
| 1076 |
+
|
| 1077 |
+
# # 4) Final yield: raw unchanged; Markdown with NER + spell-check + CER
|
| 1078 |
+
# yield final_ocr_text, final_md
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
# # ----------------------------
|
| 1082 |
+
# # UI
|
| 1083 |
+
# # ----------------------------
|
| 1084 |
+
# # IMPORTANT: examples must match the number of inputs (here: only image)
|
| 1085 |
+
# image_examples = [
|
| 1086 |
+
# ["examples/3.jpg"],
|
| 1087 |
+
# ["examples/1.jpg"],
|
| 1088 |
+
# ["examples/2.jpg"],
|
| 1089 |
+
# ]
|
| 1090 |
+
|
| 1091 |
+
# with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 1092 |
+
# gr.Markdown(
|
| 1093 |
+
# "# **Handwritten Doctor's Prescription Reading**", elem_id="main-title"
|
| 1094 |
+
# )
|
| 1095 |
+
# with gr.Row():
|
| 1096 |
+
# with gr.Column(scale=2):
|
| 1097 |
+
# image_upload = gr.Image(
|
| 1098 |
+
# type="pil", label="Upload Image", height=290
|
| 1099 |
+
# )
|
| 1100 |
+
# image_submit = gr.Button("Submit", variant="primary")
|
| 1101 |
+
# gr.Examples(
|
| 1102 |
+
# examples=image_examples,
|
| 1103 |
+
# inputs=[image_upload],
|
| 1104 |
+
# label="Example Images",
|
| 1105 |
+
# )
|
| 1106 |
+
|
| 1107 |
+
# # Spell-check selection
|
| 1108 |
+
# spell_choice = gr.Radio(
|
| 1109 |
+
# choices=["TF-IDF + Phonetic", "SymSpell", "RapidFuzz"],
|
| 1110 |
+
# label="Select Spell-check Approach",
|
| 1111 |
+
# value="TF-IDF + Phonetic",
|
| 1112 |
+
# )
|
| 1113 |
+
|
| 1114 |
+
# with gr.Accordion("Advanced options", open=False):
|
| 1115 |
+
# max_new_tokens = gr.Slider(
|
| 1116 |
+
# label="Max new tokens",
|
| 1117 |
+
# minimum=1,
|
| 1118 |
+
# maximum=MAX_MAX_NEW_TOKENS,
|
| 1119 |
+
# step=1,
|
| 1120 |
+
# value=DEFAULT_MAX_NEW_TOKENS,
|
| 1121 |
+
# )
|
| 1122 |
+
# temperature = gr.Slider(
|
| 1123 |
+
# label="Temperature",
|
| 1124 |
+
# minimum=0.1,
|
| 1125 |
+
# maximum=4.0,
|
| 1126 |
+
# step=0.1,
|
| 1127 |
+
# value=0.7,
|
| 1128 |
+
# )
|
| 1129 |
+
# top_p = gr.Slider(
|
| 1130 |
+
# label="Top-p (nucleus sampling)",
|
| 1131 |
+
# minimum=0.05,
|
| 1132 |
+
# maximum=1.0,
|
| 1133 |
+
# step=0.05,
|
| 1134 |
+
# value=0.9,
|
| 1135 |
+
# )
|
| 1136 |
+
# top_k = gr.Slider(
|
| 1137 |
+
# label="Top-k",
|
| 1138 |
+
# minimum=1,
|
| 1139 |
+
# maximum=1000,
|
| 1140 |
+
# step=1,
|
| 1141 |
+
# value=50,
|
| 1142 |
+
# )
|
| 1143 |
+
# repetition_penalty = gr.Slider(
|
| 1144 |
+
# label="Repetition penalty",
|
| 1145 |
+
# minimum=1.0,
|
| 1146 |
+
# maximum=2.0,
|
| 1147 |
+
# step=0.05,
|
| 1148 |
+
# value=1.1,
|
| 1149 |
+
# )
|
| 1150 |
+
|
| 1151 |
+
# with gr.Column(scale=3):
|
| 1152 |
+
# gr.Markdown("## Output", elem_id="output-title")
|
| 1153 |
+
# output = gr.Textbox(
|
| 1154 |
+
# label="Raw Output Stream",
|
| 1155 |
+
# interactive=False,
|
| 1156 |
+
# lines=11,
|
| 1157 |
+
# show_copy_button=True,
|
| 1158 |
+
# )
|
| 1159 |
+
# with gr.Accordion("(Result.md)", open=False):
|
| 1160 |
+
# markdown_output = gr.Markdown(label="(Result.Md)")
|
| 1161 |
+
|
| 1162 |
+
# model_choice = gr.Radio(
|
| 1163 |
+
# choices=["Chandra-OCR", "Dots.OCR"],
|
| 1164 |
+
# label="Select OCR Model",
|
| 1165 |
+
# value="Chandra-OCR",
|
| 1166 |
+
# )
|
| 1167 |
+
|
| 1168 |
+
# # Hard-coded instruction text, passed as gr.State to match the 'text' parameter
|
| 1169 |
+
# query_state = gr.State(
|
| 1170 |
+
# "Extract medicine or drugs names along with dosage amount or quantity"
|
| 1171 |
+
# )
|
| 1172 |
+
|
| 1173 |
+
# image_submit.click(
|
| 1174 |
+
# fn=generate_image,
|
| 1175 |
+
# inputs=[
|
| 1176 |
+
# model_choice,
|
| 1177 |
+
# query_state,
|
| 1178 |
+
# image_upload,
|
| 1179 |
+
# max_new_tokens,
|
| 1180 |
+
# temperature,
|
| 1181 |
+
# top_p,
|
| 1182 |
+
# top_k,
|
| 1183 |
+
# repetition_penalty,
|
| 1184 |
+
# spell_choice,
|
| 1185 |
+
# ],
|
| 1186 |
+
# outputs=[output, markdown_output],
|
| 1187 |
+
# )
|
| 1188 |
+
|
| 1189 |
+
# if __name__ == "__main__":
|
| 1190 |
+
# demo.queue(max_size=50).launch(
|
| 1191 |
+
# mcp_server=True, ssr_mode=False, show_error=True
|
| 1192 |
+
# )
|
| 1193 |
+
|
| 1194 |
+
|
| 1195 |
+
|
| 1196 |
+
######################################### version 2 #########################################################################
|
| 1197 |
|
| 1198 |
# import os
|
| 1199 |
|