Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +191 -0
- kenlm_5gram.arpa +0 -0
- requirements.txt +8 -0
- start.sh +13 -0
app.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py — Gradio ASR avec fallback (LM si disponible)
|
| 2 |
+
import os, time, json
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import librosa
|
| 6 |
+
from scipy.special import log_softmax
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 9 |
+
|
| 10 |
+
# Try to import pyctcdecode (may fail if kenlm not installed)
|
| 11 |
+
try:
|
| 12 |
+
from pyctcdecode import build_ctcdecoder
|
| 13 |
+
PYCTC_OK = True
|
| 14 |
+
except Exception as e:
|
| 15 |
+
build_ctcdecoder = None
|
| 16 |
+
PYCTC_OK = False
|
| 17 |
+
|
| 18 |
+
# ---------- CONFIG ----------
|
| 19 |
+
MODEL_ID = "IbnAoudi/fulfulfudecameroun" # already pushed on HF
|
| 20 |
+
KENLM_ARPA_PATH = "kenlm_5gram.arpa" # place this file in the Space root
|
| 21 |
+
SAMPLE_RATE = 16000
|
| 22 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
# ----------------------------
|
| 24 |
+
|
| 25 |
+
print("Loading model from:", MODEL_ID)
|
| 26 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
| 27 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 28 |
+
model.to(DEVICE)
|
| 29 |
+
model.eval()
|
| 30 |
+
print("Model loaded. Device:", DEVICE)
|
| 31 |
+
|
| 32 |
+
# --- Build safe alphabet for decoder ---
|
| 33 |
+
tokenizer = processor.tokenizer
|
| 34 |
+
vocab_size = getattr(tokenizer, "vocab_size", None) or len(tokenizer.get_vocab())
|
| 35 |
+
# convert ids -> tokens in id order (robust)
|
| 36 |
+
tokens = tokenizer.convert_ids_to_tokens(list(range(vocab_size)))
|
| 37 |
+
# create alphabet_for_decoder where index i corresponds to token id i
|
| 38 |
+
alphabet_for_decoder = []
|
| 39 |
+
pad_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else None
|
| 40 |
+
unk_id = tokenizer.unk_token_id if hasattr(tokenizer, "unk_token_id") else None
|
| 41 |
+
|
| 42 |
+
for i, tok in enumerate(tokens):
|
| 43 |
+
# Standardize special tokens: pad/unk/cls/special to empty string (pyctcdecode expects blank token as "")
|
| 44 |
+
if pad_id is not None and i == pad_id:
|
| 45 |
+
alphabet_for_decoder.append("") # blank (CTC)
|
| 46 |
+
elif tok in {tokenizer.pad_token, tokenizer.eos_token, tokenizer.bos_token, tokenizer.cls_token,
|
| 47 |
+
tokenizer.sep_token, tokenizer.unk_token, "<s>", "</s>", "<pad>", "<unk>"}:
|
| 48 |
+
alphabet_for_decoder.append("") # remove special tokens for decoder
|
| 49 |
+
else:
|
| 50 |
+
# Some tokenizers return tokens like "▁a" or "Ġa" for wordpieces — keep them as-is or strip special markers if needed
|
| 51 |
+
# For CTC char-based decoders it's good to keep the visible character
|
| 52 |
+
alphabet_for_decoder.append(tok)
|
| 53 |
+
|
| 54 |
+
print("Alphabet length:", len(alphabet_for_decoder))
|
| 55 |
+
|
| 56 |
+
decoder = None
|
| 57 |
+
if PYCTC_OK and os.path.exists(KENLM_ARPA_PATH):
|
| 58 |
+
try:
|
| 59 |
+
t0 = time.time()
|
| 60 |
+
decoder = build_ctcdecoder(alphabet_for_decoder, KENLM_ARPA_PATH)
|
| 61 |
+
print("Decoder built (KenLM) in {:.1f}s".format(time.time() - t0))
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print("Warning: failed to build decoder (pyctcdecode/kenlm). LM disabled. Error:", e)
|
| 64 |
+
decoder = None
|
| 65 |
+
else:
|
| 66 |
+
if not PYCTC_OK:
|
| 67 |
+
print("pyctcdecode not available -> LM disabled (decoder=None).")
|
| 68 |
+
else:
|
| 69 |
+
print(f"KenLM ARPA file not found at {KENLM_ARPA_PATH} -> LM disabled.")
|
| 70 |
+
|
| 71 |
+
# --- normalisation (same style as compute_metrics_fast) ---
|
| 72 |
+
import re, unicodedata
|
| 73 |
+
def normalize_text(s: str):
|
| 74 |
+
if s is None: return ""
|
| 75 |
+
s = unicodedata.normalize("NFKC", str(s)).lower().strip()
|
| 76 |
+
s = re.sub(r"[’`ʼ‹›´]", "'", s)
|
| 77 |
+
s = s.replace("|", " ")
|
| 78 |
+
s = re.sub(r"[^0-9a-zɓɗŋƴɲəàáâãäçèéêëìíîïòóôõöùúûüÿ'\t \-]", " ", s)
|
| 79 |
+
s = re.sub(r"\s+", " ", s).strip()
|
| 80 |
+
return s
|
| 81 |
+
|
| 82 |
+
# --- decoder helper with safe confidence estimation ---
|
| 83 |
+
def decode_with_lm_np(logits_np: np.array, beam_width=50, alpha=0.8, beta=1.0):
|
| 84 |
+
lp = log_softmax(logits_np, axis=-1)
|
| 85 |
+
# try decoder
|
| 86 |
+
try:
|
| 87 |
+
text = decoder.decode(lp, beam_width=int(beam_width), alpha=float(alpha), beta=float(beta))
|
| 88 |
+
# pyctcdecode does not always return a stable 'score' value; compute a fallback confidence
|
| 89 |
+
# heuristic: average max timestep prob (from softmax)
|
| 90 |
+
max_probs = np.max(np.exp(lp), axis=-1)
|
| 91 |
+
conf = float(np.mean(max_probs))
|
| 92 |
+
conf = max(0.0, min(1.0, conf))
|
| 93 |
+
except Exception as e:
|
| 94 |
+
# fallback: greedy decode
|
| 95 |
+
pred_ids = np.argmax(logits_np, axis=-1)
|
| 96 |
+
prev = None
|
| 97 |
+
out = []
|
| 98 |
+
for p in pred_ids:
|
| 99 |
+
if p != prev:
|
| 100 |
+
out.append(p)
|
| 101 |
+
prev = p
|
| 102 |
+
out = [p for p in out if p != tokenizer.pad_token_id]
|
| 103 |
+
text = processor.batch_decode([out])[0]
|
| 104 |
+
max_probs = np.max(np.exp(lp), axis=-1)
|
| 105 |
+
conf = float(np.mean(max_probs))
|
| 106 |
+
conf = max(0.0, min(1.0, conf))
|
| 107 |
+
return text, conf
|
| 108 |
+
|
| 109 |
+
# --- main transcribe function ---
|
| 110 |
+
def transcribe(audio, beam_width=50, alpha=0.8, beta=1.0, use_lm=True):
|
| 111 |
+
if audio is None:
|
| 112 |
+
return {"transcription": "", "transcription_norm": "", "confidence": 0.0}
|
| 113 |
+
# gradio: numpy tuple (sr, array) or path string
|
| 114 |
+
if isinstance(audio, tuple) and len(audio) == 2:
|
| 115 |
+
sr, wav_np = audio # some gradio versions invert order
|
| 116 |
+
# handle both patterns:
|
| 117 |
+
if isinstance(sr, np.ndarray):
|
| 118 |
+
# sometimes returns (np_array, sr)
|
| 119 |
+
wav_np, sr = sr, wav_np
|
| 120 |
+
elif isinstance(audio, str) and os.path.exists(audio):
|
| 121 |
+
wav_np, sr = librosa.load(audio, sr=None)
|
| 122 |
+
else:
|
| 123 |
+
# assume np array + SAMPLE_RATE
|
| 124 |
+
wav_np = np.array(audio)
|
| 125 |
+
sr = SAMPLE_RATE
|
| 126 |
+
|
| 127 |
+
# resample if needed
|
| 128 |
+
if sr != SAMPLE_RATE:
|
| 129 |
+
wav_np = librosa.resample(wav_np.astype(float), orig_sr=sr, target_sr=SAMPLE_RATE)
|
| 130 |
+
sr = SAMPLE_RATE
|
| 131 |
+
|
| 132 |
+
if wav_np.ndim > 1:
|
| 133 |
+
wav_np = np.mean(wav_np, axis=1)
|
| 134 |
+
wav_np = wav_np.astype(np.float32)
|
| 135 |
+
|
| 136 |
+
inputs = processor(wav_np, sampling_rate=SAMPLE_RATE, return_tensors="pt", padding=True)
|
| 137 |
+
input_values = inputs.input_values.to(DEVICE)
|
| 138 |
+
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
logits = model(input_values).logits.cpu().numpy() # (B, T, V)
|
| 141 |
+
|
| 142 |
+
logits_np = logits[0]
|
| 143 |
+
|
| 144 |
+
if use_lm and decoder is not None:
|
| 145 |
+
raw_pred, conf = decode_with_lm_np(logits_np, beam_width=int(beam_width), alpha=float(alpha), beta=float(beta))
|
| 146 |
+
else:
|
| 147 |
+
# greedy
|
| 148 |
+
pred_ids = np.argmax(logits_np, axis=-1)
|
| 149 |
+
prev = None
|
| 150 |
+
out = []
|
| 151 |
+
for p in pred_ids:
|
| 152 |
+
if p != prev:
|
| 153 |
+
out.append(p)
|
| 154 |
+
prev = p
|
| 155 |
+
out = [p for p in out if p != tokenizer.pad_token_id]
|
| 156 |
+
raw_pred = processor.batch_decode([out])[0]
|
| 157 |
+
lp = log_softmax(logits_np, axis=-1)
|
| 158 |
+
max_probs = np.max(np.exp(lp), axis=-1)
|
| 159 |
+
conf = float(np.mean(max_probs))
|
| 160 |
+
conf = max(0.0, min(1.0, conf))
|
| 161 |
+
|
| 162 |
+
pred_norm = normalize_text(raw_pred)
|
| 163 |
+
return {"transcription": raw_pred, "transcription_norm": pred_norm, "confidence": round(float(conf), 4)}
|
| 164 |
+
|
| 165 |
+
# --- Gradio UI ---
|
| 166 |
+
title = "ASR XLS-R 300m — Live transcription (LM optional)"
|
| 167 |
+
description = "Record or upload audio. If KenLM is available, decoding uses pyctcdecode+KenLM. Otherwise greedy fallback."
|
| 168 |
+
|
| 169 |
+
with gr.Blocks() as demo:
|
| 170 |
+
gr.Markdown(f"## {title}\n\nDevice: **{DEVICE}**\n\n{description}")
|
| 171 |
+
with gr.Row():
|
| 172 |
+
with gr.Column(scale=2):
|
| 173 |
+
audio_in = gr.Audio(source="microphone", type="numpy", label="Record or upload audio (wav)")
|
| 174 |
+
use_lm_checkbox = gr.Checkbox(value=True, label="Use LM (pyctcdecode + KenLM)")
|
| 175 |
+
beam_slider = gr.Slider(minimum=1, maximum=200, step=1, value=50, label="Beam width (LM)")
|
| 176 |
+
alpha_slider = gr.Slider(minimum=0.0, maximum=4.0, step=0.05, value=0.8, label="LM weight (alpha)")
|
| 177 |
+
beta_slider = gr.Slider(minimum=0.0, maximum=4.0, step=0.05, value=1.0, label="Word insertion (beta)")
|
| 178 |
+
btn = gr.Button("Transcribe")
|
| 179 |
+
with gr.Column(scale=3):
|
| 180 |
+
out_txt = gr.Textbox(label="Transcription (raw)", lines=4)
|
| 181 |
+
out_norm = gr.Textbox(label="Transcription (normalized)", lines=2)
|
| 182 |
+
out_conf = gr.Textbox(label="Confidence")
|
| 183 |
+
def _run(a, use_lm, beam, a_w, b_w):
|
| 184 |
+
res = transcribe(a, beam_width=beam, alpha=a_w, beta=b_w, use_lm=use_lm)
|
| 185 |
+
return res["transcription"], res["transcription_norm"], str(res["confidence"])
|
| 186 |
+
btn.click(_run, inputs=[audio_in, use_lm_checkbox, beam_slider, alpha_slider, beta_slider],
|
| 187 |
+
outputs=[out_txt, out_norm, out_conf])
|
| 188 |
+
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
# On Spaces, no need for share=True. On Colab you may want share=True.
|
| 191 |
+
demo.launch()
|
kenlm_5gram.arpa
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch # let Space choose supported version; or pin if needed
|
| 2 |
+
transformers==4.57.0
|
| 3 |
+
librosa==0.10.1
|
| 4 |
+
soundfile==0.12.1
|
| 5 |
+
gradio==3.39.0
|
| 6 |
+
pyctcdecode==0.34.0
|
| 7 |
+
scipy
|
| 8 |
+
numpy
|
start.sh
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
set -e
|
| 3 |
+
|
| 4 |
+
echo "Installing system deps for KenLM..."
|
| 5 |
+
apt-get update && apt-get install -y build-essential cmake libbz2-dev liblzma-dev zlib1g-dev
|
| 6 |
+
|
| 7 |
+
echo "Installing kenlm from GitHub (may take a while)..."
|
| 8 |
+
pip install --no-cache-dir https://github.com/kpu/kenlm/archive/master.zip
|
| 9 |
+
|
| 10 |
+
echo "Installing pyctcdecode with kenlm support..."
|
| 11 |
+
pip install --no-cache-dir pyctcdecode[kenlm]
|
| 12 |
+
|
| 13 |
+
echo "Done start.sh"
|