Spaces:
Running
on
Zero
Running
on
Zero
Update pipline_StableDiffusion_ConsistentID.py
Browse files
pipline_StableDiffusion_ConsistentID.py
CHANGED
|
@@ -5,7 +5,8 @@ import numpy as np
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
-
from insightface.app import FaceAnalysis
|
|
|
|
| 9 |
from safetensors import safe_open
|
| 10 |
from huggingface_hub.utils import validate_hf_hub_args
|
| 11 |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|
@@ -15,15 +16,11 @@ from diffusers.utils import _get_model_file
|
|
| 15 |
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
|
| 16 |
from functions import ProjPlusModel, masks_for_unique_values
|
| 17 |
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
|
| 18 |
-
# from modelscope.outputs import OutputKeys
|
| 19 |
-
# from modelscope.pipelines import pipeline
|
| 20 |
-
|
| 21 |
-
#TODO
|
| 22 |
-
import sys
|
| 23 |
-
sys.path.append("./models/BiSeNet")
|
| 24 |
-
from model import BiSeNet
|
| 25 |
-
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
PipelineImageInput = Union[
|
| 29 |
PIL.Image.Image,
|
|
@@ -32,7 +29,7 @@ PipelineImageInput = Union[
|
|
| 32 |
List[torch.FloatTensor],
|
| 33 |
]
|
| 34 |
|
| 35 |
-
|
| 36 |
class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
| 37 |
|
| 38 |
@validate_hf_hub_args
|
|
@@ -43,13 +40,13 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 43 |
subfolder: str = '',
|
| 44 |
trigger_word_ID: str = '<|image|>',
|
| 45 |
trigger_word_facial: str = '<|facial|>',
|
| 46 |
-
image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
|
| 47 |
torch_dtype = torch.float16,
|
| 48 |
num_tokens = 4,
|
| 49 |
lora_rank= 128,
|
| 50 |
**kwargs,
|
| 51 |
):
|
| 52 |
-
self.lora_rank = lora_rank
|
| 53 |
self.torch_dtype = torch_dtype
|
| 54 |
self.num_tokens = num_tokens
|
| 55 |
self.set_ip_adapter()
|
|
@@ -68,7 +65,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 68 |
### BiSeNet
|
| 69 |
self.bise_net = BiSeNet(n_classes = 19)
|
| 70 |
self.bise_net.cuda()
|
| 71 |
-
self.bise_net_cp='
|
| 72 |
self.bise_net.load_state_dict(torch.load(self.bise_net_cp))
|
| 73 |
self.bise_net.eval()
|
| 74 |
# Colors for all 20 parts
|
|
@@ -82,8 +79,9 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 82 |
[255, 0, 255], [255, 85, 255], [255, 170, 255],
|
| 83 |
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
| 84 |
|
| 85 |
-
### LLVA Optional
|
| 86 |
-
self.llva_model_path = "
|
|
|
|
| 87 |
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
|
| 88 |
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
|
| 89 |
|
|
@@ -91,12 +89,10 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 91 |
cross_attention_dim=self.unet.config.cross_attention_dim,
|
| 92 |
id_embeddings_dim=512,
|
| 93 |
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
| 94 |
-
num_tokens=self.num_tokens, # 4
|
| 95 |
).to(self.device, dtype=self.torch_dtype)
|
| 96 |
self.FacialEncoder = FacialEncoder(self.image_encoder).to(self.device, dtype=self.torch_dtype)
|
| 97 |
|
| 98 |
-
# self.skin_retouching = pipeline('skin-retouching-torch', model='damo/cv_unet_skin_retouching_torch', model_revision='v1.0.2')
|
| 99 |
-
|
| 100 |
# Load the main state dict first.
|
| 101 |
cache_dir = kwargs.pop("cache_dir", None)
|
| 102 |
force_download = kwargs.pop("force_download", False)
|
|
@@ -189,8 +185,10 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 189 |
multi_facial_embeds = torch.stack(hidden_states)
|
| 190 |
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
|
| 191 |
|
|
|
|
| 192 |
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
| 193 |
|
|
|
|
| 194 |
uncond_facial_prompt_embeds = self.FacialEncoder(negative_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
| 195 |
|
| 196 |
return facial_prompt_embeds, uncond_facial_prompt_embeds
|
|
@@ -202,9 +200,11 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 202 |
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
|
| 203 |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 204 |
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
|
|
|
| 205 |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
| 206 |
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 207 |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
|
|
|
| 208 |
return image_prompt_tokens, uncond_image_prompt_embeds
|
| 209 |
|
| 210 |
def set_scale(self, scale):
|
|
@@ -220,6 +220,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 220 |
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
|
| 221 |
else:
|
| 222 |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
|
|
|
| 223 |
return faceid_embeds
|
| 224 |
|
| 225 |
@torch.inference_mode()
|
|
@@ -237,13 +238,13 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 237 |
img = to_tensor(image)
|
| 238 |
img = torch.unsqueeze(img, 0)
|
| 239 |
img = img.float().cuda()
|
| 240 |
-
out = self.bise_net(img)[0]
|
| 241 |
-
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
|
| 242 |
|
| 243 |
im = np.array(image_resize_PIL)
|
| 244 |
vis_im = im.copy().astype(np.uint8)
|
| 245 |
stride=1
|
| 246 |
-
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
| 247 |
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
| 248 |
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
| 249 |
|
|
@@ -253,7 +254,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 253 |
index = np.where(vis_parsing_anno == pi)
|
| 254 |
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
|
| 255 |
|
| 256 |
-
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
| 257 |
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
| 258 |
|
| 259 |
return vis_parsing_anno_color, vis_parsing_anno
|
|
@@ -282,23 +283,20 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 282 |
|
| 283 |
return face_caption
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
@torch.inference_mode()
|
| 288 |
def get_prepare_facemask(self, input_image_file):
|
|
|
|
| 289 |
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
|
| 290 |
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
|
| 291 |
|
| 292 |
key_parsing_mask_list = {}
|
| 293 |
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
|
| 294 |
-
|
| 295 |
-
|
| 296 |
processed_keys = set()
|
| 297 |
for key, mask_image in parsing_mask_list.items():
|
| 298 |
if key in key_list:
|
| 299 |
if "_" in key:
|
| 300 |
prefix = key.split("_")[1]
|
| 301 |
-
if prefix in processed_keys:
|
| 302 |
continue
|
| 303 |
else:
|
| 304 |
key_parsing_mask_list[key] = mask_image
|
|
@@ -320,6 +318,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 320 |
device: Optional[torch.device] = None,
|
| 321 |
):
|
| 322 |
device = device or self._execution_device
|
|
|
|
| 323 |
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
|
| 324 |
|
| 325 |
prompt_face = prompt + "Detail:" + face_caption_align
|
|
@@ -335,9 +334,11 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 335 |
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
|
| 336 |
tokenizer = self.tokenizer
|
| 337 |
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
|
| 338 |
-
image_token_id = None
|
|
|
|
| 339 |
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
|
| 340 |
prompt_face, image_token_id, facial_token_id, tokenizer)
|
|
|
|
| 341 |
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
|
| 342 |
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
|
| 343 |
|
|
@@ -352,6 +353,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 352 |
clip_image_processor = CLIPImageProcessor()
|
| 353 |
|
| 354 |
num_facial_part = len(key_parsing_mask_list)
|
|
|
|
| 355 |
for key in key_parsing_mask_list:
|
| 356 |
key_mask=key_parsing_mask_list[key]
|
| 357 |
facial_mask.append(transform_mask(key_mask))
|
|
@@ -361,6 +363,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 361 |
|
| 362 |
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
|
| 363 |
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
|
|
|
|
| 364 |
if num_facial_part < max_num_facials:
|
| 365 |
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
|
| 366 |
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
|
|
@@ -368,7 +371,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 368 |
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
|
| 369 |
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
|
| 370 |
|
| 371 |
-
return facial_clip_image, facial_mask
|
| 372 |
|
| 373 |
@torch.no_grad()
|
| 374 |
def __call__(
|
|
@@ -393,12 +396,9 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 393 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 394 |
callback_steps: int = 1,
|
| 395 |
input_id_images: PipelineImageInput = None,
|
| 396 |
-
reference_id_images: PipelineImageInput =None,
|
| 397 |
start_merge_step: int = 0,
|
| 398 |
class_tokens_mask: Optional[torch.LongTensor] = None,
|
| 399 |
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
| 400 |
-
retouching: bool=False,
|
| 401 |
-
need_safetycheck: bool=True,
|
| 402 |
):
|
| 403 |
# 0. Default height and width to unet
|
| 404 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
@@ -424,7 +424,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 424 |
if prompt is not None and isinstance(prompt, str):
|
| 425 |
batch_size = 1
|
| 426 |
elif prompt is not None and isinstance(prompt, list):
|
| 427 |
-
batch_size = len(prompt)
|
| 428 |
else:
|
| 429 |
batch_size = prompt_embeds.shape[0]
|
| 430 |
|
|
@@ -432,8 +432,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 432 |
do_classifier_free_guidance = guidance_scale >= 1.0
|
| 433 |
input_image_file = input_id_images[0]
|
| 434 |
|
| 435 |
-
|
| 436 |
-
faceid_embeds = self.get_prepare_faceid(face_image=input_image_file)
|
| 437 |
face_caption = self.get_prepare_llva_caption(input_image_file)
|
| 438 |
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
|
| 439 |
|
|
@@ -445,13 +444,14 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 445 |
(
|
| 446 |
prompt_text_only,
|
| 447 |
clean_input_id,
|
| 448 |
-
key_parsing_mask_list_align,
|
| 449 |
-
facial_token_mask,
|
| 450 |
-
facial_token_idx,
|
| 451 |
facial_token_idx_mask,
|
| 452 |
) = self.encode_prompt_with_trigger_word(
|
| 453 |
prompt = prompt,
|
| 454 |
face_caption = face_caption,
|
|
|
|
| 455 |
key_parsing_mask_list=key_parsing_mask_list,
|
| 456 |
device=device,
|
| 457 |
max_num_facials = 5,
|
|
@@ -463,18 +463,20 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 463 |
|
| 464 |
# 4. Encode input prompt without the trigger word for delayed conditioning
|
| 465 |
encoder_hidden_states = self.text_encoder(clean_input_id.to(device))[0]
|
|
|
|
| 466 |
prompt_embeds = self._encode_prompt(
|
| 467 |
prompt_text_only,
|
| 468 |
device=device,
|
| 469 |
num_images_per_prompt=num_images_per_prompt,
|
| 470 |
do_classifier_free_guidance=True,
|
| 471 |
negative_prompt=negative_prompt,
|
| 472 |
-
)
|
| 473 |
negative_encoder_hidden_states_text_only = prompt_embeds[0:num_images_per_prompt]
|
| 474 |
encoder_hidden_states_text_only = prompt_embeds[num_images_per_prompt:]
|
| 475 |
|
| 476 |
# 5. Prepare the input ID images
|
| 477 |
-
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=
|
|
|
|
| 478 |
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=512, max_num_facials=5)
|
| 479 |
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
|
| 480 |
facial_token_mask = facial_token_mask.to(device)
|
|
@@ -483,11 +485,13 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 483 |
|
| 484 |
cross_attention_kwargs = {}
|
| 485 |
|
| 486 |
-
# 6. Get the update text
|
| 487 |
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_encoder_hidden_states, \
|
| 488 |
facial_clip_images, facial_token_mask, facial_token_idx_mask)
|
|
|
|
| 489 |
prompt_embeds = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
|
| 490 |
negative_prompt_embeds = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
|
|
|
|
| 491 |
prompt_embeds = self._encode_prompt(
|
| 492 |
prompt,
|
| 493 |
device,
|
|
@@ -519,8 +523,8 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 519 |
|
| 520 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 521 |
(
|
| 522 |
-
null_prompt_embeds,
|
| 523 |
-
augmented_prompt_embeds,
|
| 524 |
text_prompt_embeds,
|
| 525 |
) = prompt_embeds.chunk(3)
|
| 526 |
|
|
@@ -542,6 +546,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 542 |
[null_prompt_embeds, augmented_prompt_embeds], dim=0
|
| 543 |
)
|
| 544 |
|
|
|
|
| 545 |
noise_pred = self.unet(
|
| 546 |
latent_model_input,
|
| 547 |
t,
|
|
@@ -574,25 +579,17 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 574 |
if output_type == "latent":
|
| 575 |
image = latents
|
| 576 |
has_nsfw_concept = None
|
| 577 |
-
elif output_type == "pil":
|
| 578 |
# 9.1 Post-processing
|
| 579 |
image = self.decode_latents(latents)
|
| 580 |
|
| 581 |
# 9.2 Run safety checker
|
| 582 |
-
|
| 583 |
-
image,
|
| 584 |
-
|
| 585 |
-
)
|
| 586 |
-
else:
|
| 587 |
-
has_nsfw_concept = None
|
| 588 |
|
| 589 |
-
# 9.3 Convert to PIL
|
| 590 |
-
image = self.numpy_to_pil(image)
|
| 591 |
-
|
| 592 |
-
# if retouching:
|
| 593 |
-
# after_retouching = self.skin_retouching(image[0])
|
| 594 |
-
# if OutputKeys.OUTPUT_IMG in after_retouching:
|
| 595 |
-
# image = [Image.fromarray(cv2.cvtColor(after_retouching[OutputKeys.OUTPUT_IMG], cv2.COLOR_BGR2RGB))]
|
| 596 |
else:
|
| 597 |
# 9.1 Post-processing
|
| 598 |
image = self.decode_latents(latents)
|
|
@@ -602,7 +599,6 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 602 |
image, device, prompt_embeds.dtype
|
| 603 |
)
|
| 604 |
|
| 605 |
-
|
| 606 |
# Offload last model to CPU
|
| 607 |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 608 |
self.final_offload_hook.offload()
|
|
@@ -614,3 +610,10 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 614 |
images=image, nsfw_content_detected=has_nsfw_concept
|
| 615 |
)
|
| 616 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
+
from insightface.app import FaceAnalysis
|
| 9 |
+
### insight-face installation can be found at https://github.com/deepinsight/insightface
|
| 10 |
from safetensors import safe_open
|
| 11 |
from huggingface_hub.utils import validate_hf_hub_args
|
| 12 |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|
|
|
| 16 |
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
|
| 17 |
from functions import ProjPlusModel, masks_for_unique_values
|
| 18 |
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file
|
| 21 |
+
### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
|
| 22 |
+
### Thanks for the open source of face-parsing model.
|
| 23 |
+
from models.BiSeNet.model import BiSeNet
|
| 24 |
|
| 25 |
PipelineImageInput = Union[
|
| 26 |
PIL.Image.Image,
|
|
|
|
| 29 |
List[torch.FloatTensor],
|
| 30 |
]
|
| 31 |
|
| 32 |
+
### Download the pretrained model from huggingface and put it locally, then place the model in a local directory and specify the directory location.
|
| 33 |
class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
| 34 |
|
| 35 |
@validate_hf_hub_args
|
|
|
|
| 40 |
subfolder: str = '',
|
| 41 |
trigger_word_ID: str = '<|image|>',
|
| 42 |
trigger_word_facial: str = '<|facial|>',
|
| 43 |
+
image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
|
| 44 |
torch_dtype = torch.float16,
|
| 45 |
num_tokens = 4,
|
| 46 |
lora_rank= 128,
|
| 47 |
**kwargs,
|
| 48 |
):
|
| 49 |
+
self.lora_rank = lora_rank
|
| 50 |
self.torch_dtype = torch_dtype
|
| 51 |
self.num_tokens = num_tokens
|
| 52 |
self.set_ip_adapter()
|
|
|
|
| 65 |
### BiSeNet
|
| 66 |
self.bise_net = BiSeNet(n_classes = 19)
|
| 67 |
self.bise_net.cuda()
|
| 68 |
+
self.bise_net_cp='JackAILab/ConsistentID/face_parsing.pth'
|
| 69 |
self.bise_net.load_state_dict(torch.load(self.bise_net_cp))
|
| 70 |
self.bise_net.eval()
|
| 71 |
# Colors for all 20 parts
|
|
|
|
| 79 |
[255, 0, 255], [255, 85, 255], [255, 170, 255],
|
| 80 |
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
| 81 |
|
| 82 |
+
### LLVA (Optional)
|
| 83 |
+
self.llva_model_path = "liuhaotian/llava-v1.5-13b" # TODO
|
| 84 |
+
# IMPORTANT! Download the openai/clip-vit-large-patch14-336 model and specify the model path in config.json ("mm_vision_tower": "openai/clip-vit-large-patch14-336").
|
| 85 |
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
|
| 86 |
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
|
| 87 |
|
|
|
|
| 89 |
cross_attention_dim=self.unet.config.cross_attention_dim,
|
| 90 |
id_embeddings_dim=512,
|
| 91 |
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
| 92 |
+
num_tokens=self.num_tokens, # 4 - inspirsed by IPAdapter and Midjourney
|
| 93 |
).to(self.device, dtype=self.torch_dtype)
|
| 94 |
self.FacialEncoder = FacialEncoder(self.image_encoder).to(self.device, dtype=self.torch_dtype)
|
| 95 |
|
|
|
|
|
|
|
| 96 |
# Load the main state dict first.
|
| 97 |
cache_dir = kwargs.pop("cache_dir", None)
|
| 98 |
force_download = kwargs.pop("force_download", False)
|
|
|
|
| 185 |
multi_facial_embeds = torch.stack(hidden_states)
|
| 186 |
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
|
| 187 |
|
| 188 |
+
# condition
|
| 189 |
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
| 190 |
|
| 191 |
+
# uncondition
|
| 192 |
uncond_facial_prompt_embeds = self.FacialEncoder(negative_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
| 193 |
|
| 194 |
return facial_prompt_embeds, uncond_facial_prompt_embeds
|
|
|
|
| 200 |
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
|
| 201 |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 202 |
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
| 203 |
+
|
| 204 |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
| 205 |
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 206 |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 207 |
+
|
| 208 |
return image_prompt_tokens, uncond_image_prompt_embeds
|
| 209 |
|
| 210 |
def set_scale(self, scale):
|
|
|
|
| 220 |
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
|
| 221 |
else:
|
| 222 |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 223 |
+
|
| 224 |
return faceid_embeds
|
| 225 |
|
| 226 |
@torch.inference_mode()
|
|
|
|
| 238 |
img = to_tensor(image)
|
| 239 |
img = torch.unsqueeze(img, 0)
|
| 240 |
img = img.float().cuda()
|
| 241 |
+
out = self.bise_net(img)[0]
|
| 242 |
+
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
|
| 243 |
|
| 244 |
im = np.array(image_resize_PIL)
|
| 245 |
vis_im = im.copy().astype(np.uint8)
|
| 246 |
stride=1
|
| 247 |
+
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
| 248 |
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
| 249 |
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
| 250 |
|
|
|
|
| 254 |
index = np.where(vis_parsing_anno == pi)
|
| 255 |
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
|
| 256 |
|
| 257 |
+
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
| 258 |
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
| 259 |
|
| 260 |
return vis_parsing_anno_color, vis_parsing_anno
|
|
|
|
| 283 |
|
| 284 |
return face_caption
|
| 285 |
|
|
|
|
|
|
|
| 286 |
@torch.inference_mode()
|
| 287 |
def get_prepare_facemask(self, input_image_file):
|
| 288 |
+
|
| 289 |
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
|
| 290 |
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
|
| 291 |
|
| 292 |
key_parsing_mask_list = {}
|
| 293 |
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
|
|
|
|
|
|
|
| 294 |
processed_keys = set()
|
| 295 |
for key, mask_image in parsing_mask_list.items():
|
| 296 |
if key in key_list:
|
| 297 |
if "_" in key:
|
| 298 |
prefix = key.split("_")[1]
|
| 299 |
+
if prefix in processed_keys:
|
| 300 |
continue
|
| 301 |
else:
|
| 302 |
key_parsing_mask_list[key] = mask_image
|
|
|
|
| 318 |
device: Optional[torch.device] = None,
|
| 319 |
):
|
| 320 |
device = device or self._execution_device
|
| 321 |
+
|
| 322 |
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
|
| 323 |
|
| 324 |
prompt_face = prompt + "Detail:" + face_caption_align
|
|
|
|
| 334 |
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
|
| 335 |
tokenizer = self.tokenizer
|
| 336 |
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
|
| 337 |
+
image_token_id = None
|
| 338 |
+
|
| 339 |
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
|
| 340 |
prompt_face, image_token_id, facial_token_id, tokenizer)
|
| 341 |
+
|
| 342 |
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
|
| 343 |
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
|
| 344 |
|
|
|
|
| 353 |
clip_image_processor = CLIPImageProcessor()
|
| 354 |
|
| 355 |
num_facial_part = len(key_parsing_mask_list)
|
| 356 |
+
|
| 357 |
for key in key_parsing_mask_list:
|
| 358 |
key_mask=key_parsing_mask_list[key]
|
| 359 |
facial_mask.append(transform_mask(key_mask))
|
|
|
|
| 363 |
|
| 364 |
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
|
| 365 |
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
|
| 366 |
+
|
| 367 |
if num_facial_part < max_num_facials:
|
| 368 |
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
|
| 369 |
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
|
|
|
|
| 371 |
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
|
| 372 |
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
|
| 373 |
|
| 374 |
+
return facial_clip_image, facial_mask
|
| 375 |
|
| 376 |
@torch.no_grad()
|
| 377 |
def __call__(
|
|
|
|
| 396 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 397 |
callback_steps: int = 1,
|
| 398 |
input_id_images: PipelineImageInput = None,
|
|
|
|
| 399 |
start_merge_step: int = 0,
|
| 400 |
class_tokens_mask: Optional[torch.LongTensor] = None,
|
| 401 |
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
| 402 |
):
|
| 403 |
# 0. Default height and width to unet
|
| 404 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
| 424 |
if prompt is not None and isinstance(prompt, str):
|
| 425 |
batch_size = 1
|
| 426 |
elif prompt is not None and isinstance(prompt, list):
|
| 427 |
+
batch_size = len(prompt)
|
| 428 |
else:
|
| 429 |
batch_size = prompt_embeds.shape[0]
|
| 430 |
|
|
|
|
| 432 |
do_classifier_free_guidance = guidance_scale >= 1.0
|
| 433 |
input_image_file = input_id_images[0]
|
| 434 |
|
| 435 |
+
faceid_embeds = self.get_prepare_faceid(face_image=input_image_file)
|
|
|
|
| 436 |
face_caption = self.get_prepare_llva_caption(input_image_file)
|
| 437 |
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
|
| 438 |
|
|
|
|
| 444 |
(
|
| 445 |
prompt_text_only,
|
| 446 |
clean_input_id,
|
| 447 |
+
key_parsing_mask_list_align,
|
| 448 |
+
facial_token_mask,
|
| 449 |
+
facial_token_idx,
|
| 450 |
facial_token_idx_mask,
|
| 451 |
) = self.encode_prompt_with_trigger_word(
|
| 452 |
prompt = prompt,
|
| 453 |
face_caption = face_caption,
|
| 454 |
+
# prompt_2=None,
|
| 455 |
key_parsing_mask_list=key_parsing_mask_list,
|
| 456 |
device=device,
|
| 457 |
max_num_facials = 5,
|
|
|
|
| 463 |
|
| 464 |
# 4. Encode input prompt without the trigger word for delayed conditioning
|
| 465 |
encoder_hidden_states = self.text_encoder(clean_input_id.to(device))[0]
|
| 466 |
+
|
| 467 |
prompt_embeds = self._encode_prompt(
|
| 468 |
prompt_text_only,
|
| 469 |
device=device,
|
| 470 |
num_images_per_prompt=num_images_per_prompt,
|
| 471 |
do_classifier_free_guidance=True,
|
| 472 |
negative_prompt=negative_prompt,
|
| 473 |
+
)
|
| 474 |
negative_encoder_hidden_states_text_only = prompt_embeds[0:num_images_per_prompt]
|
| 475 |
encoder_hidden_states_text_only = prompt_embeds[num_images_per_prompt:]
|
| 476 |
|
| 477 |
# 5. Prepare the input ID images
|
| 478 |
+
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=1.0, shortcut=False)
|
| 479 |
+
|
| 480 |
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=512, max_num_facials=5)
|
| 481 |
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
|
| 482 |
facial_token_mask = facial_token_mask.to(device)
|
|
|
|
| 485 |
|
| 486 |
cross_attention_kwargs = {}
|
| 487 |
|
| 488 |
+
# 6. Get the update text embedding
|
| 489 |
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_encoder_hidden_states, \
|
| 490 |
facial_clip_images, facial_token_mask, facial_token_idx_mask)
|
| 491 |
+
|
| 492 |
prompt_embeds = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
|
| 493 |
negative_prompt_embeds = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
|
| 494 |
+
|
| 495 |
prompt_embeds = self._encode_prompt(
|
| 496 |
prompt,
|
| 497 |
device,
|
|
|
|
| 523 |
|
| 524 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 525 |
(
|
| 526 |
+
null_prompt_embeds,
|
| 527 |
+
augmented_prompt_embeds,
|
| 528 |
text_prompt_embeds,
|
| 529 |
) = prompt_embeds.chunk(3)
|
| 530 |
|
|
|
|
| 546 |
[null_prompt_embeds, augmented_prompt_embeds], dim=0
|
| 547 |
)
|
| 548 |
|
| 549 |
+
# predict the noise residual
|
| 550 |
noise_pred = self.unet(
|
| 551 |
latent_model_input,
|
| 552 |
t,
|
|
|
|
| 579 |
if output_type == "latent":
|
| 580 |
image = latents
|
| 581 |
has_nsfw_concept = None
|
| 582 |
+
elif output_type == "pil":
|
| 583 |
# 9.1 Post-processing
|
| 584 |
image = self.decode_latents(latents)
|
| 585 |
|
| 586 |
# 9.2 Run safety checker
|
| 587 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
| 588 |
+
image, device, prompt_embeds.dtype
|
| 589 |
+
)
|
|
|
|
|
|
|
|
|
|
| 590 |
|
| 591 |
+
# 9.3 Convert to PIL
|
| 592 |
+
image = self.numpy_to_pil(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 593 |
else:
|
| 594 |
# 9.1 Post-processing
|
| 595 |
image = self.decode_latents(latents)
|
|
|
|
| 599 |
image, device, prompt_embeds.dtype
|
| 600 |
)
|
| 601 |
|
|
|
|
| 602 |
# Offload last model to CPU
|
| 603 |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 604 |
self.final_offload_hook.offload()
|
|
|
|
| 610 |
images=image, nsfw_content_detected=has_nsfw_concept
|
| 611 |
)
|
| 612 |
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|