Spaces:
Configuration error
Configuration error
| from torch import Tensor | |
| import torch | |
| from .utils import TimestepKeyframe, TimestepKeyframeGroup, ControlWeights, get_properly_arranged_t2i_weights, linear_conversion | |
| from .logger import logger | |
| WEIGHTS_RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") | |
| class DefaultWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights" | |
| def load_weights(self): | |
| weights = ControlWeights.default() | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
| class ScaledSoftMaskedUniversalWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK", ), | |
| "min_base_multiplier": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ), | |
| "max_base_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}, ), | |
| #"lock_min": ("BOOLEAN", {"default": False}, ), | |
| #"lock_max": ("BOOLEAN", {"default": False}, ), | |
| }, | |
| "optional": { | |
| "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
| } | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights" | |
| def load_weights(self, mask: Tensor, min_base_multiplier: float, max_base_multiplier: float, lock_min=False, lock_max=False, | |
| uncond_multiplier: float=1.0): | |
| # normalize mask | |
| mask = mask.clone() | |
| x_min = 0.0 if lock_min else mask.min() | |
| x_max = 1.0 if lock_max else mask.max() | |
| if x_min == x_max: | |
| mask = torch.ones_like(mask) * max_base_multiplier | |
| else: | |
| mask = linear_conversion(mask, x_min, x_max, min_base_multiplier, max_base_multiplier) | |
| weights = ControlWeights.universal_mask(weight_mask=mask, uncond_multiplier=uncond_multiplier) | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
| class ScaledSoftUniversalWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ), | |
| "flip_weights": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
| } | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights" | |
| def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0): | |
| weights = ControlWeights.universal(base_multiplier=base_multiplier, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier) | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
| class SoftControlNetWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "flip_weights": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
| } | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights/ControlNet" | |
| def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, | |
| weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights, | |
| uncond_multiplier: float=1.0): | |
| weights = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, | |
| weight_07, weight_08, weight_09, weight_10, weight_11, weight_12] | |
| weights = ControlWeights.controlnet(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier) | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
| class CustomControlNetWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "flip_weights": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
| } | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights/ControlNet" | |
| def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, | |
| weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights, | |
| uncond_multiplier: float=1.0): | |
| weights = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, | |
| weight_07, weight_08, weight_09, weight_10, weight_11, weight_12] | |
| weights = ControlWeights.controlnet(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier) | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
| class SoftT2IAdapterWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "flip_weights": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
| } | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights/T2IAdapter" | |
| def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights, | |
| uncond_multiplier: float=1.0): | |
| weights = [weight_00, weight_01, weight_02, weight_03] | |
| weights = get_properly_arranged_t2i_weights(weights) | |
| weights = ControlWeights.t2iadapter(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier) | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
| class CustomT2IAdapterWeights: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
| "flip_weights": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
| } | |
| } | |
| RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
| RETURN_NAMES = WEIGHTS_RETURN_NAMES | |
| FUNCTION = "load_weights" | |
| CATEGORY = "Adv-ControlNet ππ π π /weights/T2IAdapter" | |
| def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights, | |
| uncond_multiplier: float=1.0): | |
| weights = [weight_00, weight_01, weight_02, weight_03] | |
| weights = get_properly_arranged_t2i_weights(weights) | |
| weights = ControlWeights.t2iadapter(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier) | |
| return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |