Spaces:
Configuration error
Configuration error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # -------------------------------------------------------- | |
| # References: | |
| # GLIDE: https://github.com/openai/glide-text2im | |
| # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
| # -------------------------------------------------------- | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import os | |
| import numpy as np | |
| from timm.models.layers import DropPath | |
| from timm.models.vision_transformer import PatchEmbed, Mlp | |
| from .utils import auto_grad_checkpoint, to_2tuple | |
| from .PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, LabelEmbedder, FinalLayer | |
| class PixArtBlock(nn.Module): | |
| """ | |
| A PixArt block with adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0, input_size=None, sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs): | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.attn = AttentionKVCompress( | |
| hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, | |
| qk_norm=qk_norm, **block_kwargs | |
| ) | |
| self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) | |
| self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| # to be compatible with lower version pytorch | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) | |
| self.sampling = sampling | |
| self.sr_ratio = sr_ratio | |
| def forward(self, x, y, t, mask=None, **kwargs): | |
| B, N, C = x.shape | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1) | |
| x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) | |
| x = x + self.cross_attn(x, y, mask) | |
| x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
| return x | |
| ### Core PixArt Model ### | |
| class PixArt(nn.Module): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| input_size=32, | |
| patch_size=2, | |
| in_channels=4, | |
| hidden_size=1152, | |
| depth=28, | |
| num_heads=16, | |
| mlp_ratio=4.0, | |
| class_dropout_prob=0.1, | |
| pred_sigma=True, | |
| drop_path: float = 0., | |
| caption_channels=4096, | |
| pe_interpolation=1.0, | |
| pe_precision=None, | |
| config=None, | |
| model_max_length=120, | |
| qk_norm=False, | |
| kv_compress_config=None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.pred_sigma = pred_sigma | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
| self.patch_size = patch_size | |
| self.num_heads = num_heads | |
| self.pe_interpolation = pe_interpolation | |
| self.pe_precision = pe_precision | |
| self.depth = depth | |
| self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) | |
| self.t_embedder = TimestepEmbedder(hidden_size) | |
| num_patches = self.x_embedder.num_patches | |
| self.base_size = input_size // self.patch_size | |
| # Will use fixed sin-cos embedding: | |
| self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.t_block = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
| ) | |
| self.y_embedder = CaptionEmbedder( | |
| in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, | |
| act_layer=approx_gelu, token_num=model_max_length | |
| ) | |
| drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
| self.kv_compress_config = kv_compress_config | |
| if kv_compress_config is None: | |
| self.kv_compress_config = { | |
| 'sampling': None, | |
| 'scale_factor': 1, | |
| 'kv_compress_layer': [], | |
| } | |
| self.blocks = nn.ModuleList([ | |
| PixArtBlock( | |
| hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], | |
| input_size=(input_size // patch_size, input_size // patch_size), | |
| sampling=self.kv_compress_config['sampling'], | |
| sr_ratio=int( | |
| self.kv_compress_config['scale_factor'] | |
| ) if i in self.kv_compress_config['kv_compress_layer'] else 1, | |
| qk_norm=qk_norm, | |
| ) | |
| for i in range(depth) | |
| ]) | |
| self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
| def forward_raw(self, x, t, y, mask=None, data_info=None): | |
| """ | |
| Original forward pass of PixArt. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) tensor of class labels | |
| """ | |
| x = x.to(self.dtype) | |
| timestep = t.to(self.dtype) | |
| y = y.to(self.dtype) | |
| pos_embed = self.pos_embed.to(self.dtype) | |
| self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size | |
| x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
| t = self.t_embedder(timestep.to(x.dtype)) # (N, D) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training) # (N, 1, L, D) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = [y.shape[2]] * y.shape[0] | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| for block in self.blocks: | |
| x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x) # (N, out_channels, H, W) | |
| return x | |
| def forward(self, x, timesteps, context, y=None, **kwargs): | |
| """ | |
| Forward pass that adapts comfy input to original forward function | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| timesteps: (N,) tensor of diffusion timesteps | |
| context: (N, 1, 120, C) conditioning | |
| y: extra conditioning. | |
| """ | |
| ## Still accepts the input w/o that dim but returns garbage | |
| if len(context.shape) == 3: | |
| context = context.unsqueeze(1) | |
| ## run original forward pass | |
| out = self.forward_raw( | |
| x = x.to(self.dtype), | |
| t = timesteps.to(self.dtype), | |
| y = context.to(self.dtype), | |
| ) | |
| ## only return EPS | |
| out = out.to(torch.float) | |
| eps, rest = out[:, :self.in_channels], out[:, self.in_channels:] | |
| return eps | |
| def unpatchify(self, x): | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| c = self.out_channels | |
| p = self.x_embedder.patch_size[0] | |
| h = w = int(x.shape[1] ** 0.5) | |
| assert h * w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
| x = torch.einsum('nhwpqc->nchpwq', x) | |
| imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) | |
| return imgs | |
| def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16): | |
| """ | |
| grid_size: int of the grid height and width | |
| return: | |
| pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
| """ | |
| if isinstance(grid_size, int): | |
| grid_size = to_2tuple(grid_size) | |
| grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0]/base_size) / pe_interpolation | |
| grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1]/base_size) / pe_interpolation | |
| grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
| grid = np.stack(grid, axis=0) | |
| grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) | |
| pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
| if cls_token and extra_tokens > 0: | |
| pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
| return pos_embed.astype(np.float32) | |
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
| assert embed_dim % 2 == 0 | |
| # use half of dimensions to encode grid_h | |
| emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
| emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
| emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
| return emb | |
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
| """ | |
| embed_dim: output dimension for each position | |
| pos: a list of positions to be encoded: size (M,) | |
| out: (M, D) | |
| """ | |
| assert embed_dim % 2 == 0 | |
| omega = np.arange(embed_dim // 2, dtype=np.float64) | |
| omega /= embed_dim / 2. | |
| omega = 1. / 10000 ** omega # (D/2,) | |
| pos = pos.reshape(-1) # (M,) | |
| out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
| emb_sin = np.sin(out) # (M, D/2) | |
| emb_cos = np.cos(out) # (M, D/2) | |
| emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
| return emb | |