Spaces:
Configuration error
Configuration error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # -------------------------------------------------------- | |
| # References: | |
| # GLIDE: https://github.com/openai/glide-text2im | |
| # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
| # -------------------------------------------------------- | |
| import torch | |
| import torch.nn as nn | |
| from tqdm import tqdm | |
| from timm.models.layers import DropPath | |
| from timm.models.vision_transformer import Mlp | |
| from .utils import auto_grad_checkpoint, to_2tuple | |
| from .PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, SizeEmbedder | |
| from .PixArt import PixArt, get_2d_sincos_pos_embed | |
| class PatchEmbed(nn.Module): | |
| """ | |
| 2D Image to Patch Embedding | |
| """ | |
| def __init__( | |
| self, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| norm_layer=None, | |
| flatten=True, | |
| bias=True, | |
| ): | |
| super().__init__() | |
| patch_size = to_2tuple(patch_size) | |
| self.patch_size = patch_size | |
| self.flatten = flatten | |
| self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) | |
| self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
| def forward(self, x): | |
| x = self.proj(x) | |
| if self.flatten: | |
| x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
| x = self.norm(x) | |
| return x | |
| class PixArtMSBlock(nn.Module): | |
| """ | |
| A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
| """ | |
| def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None, | |
| sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.attn = AttentionKVCompress( | |
| hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, | |
| qk_norm=qk_norm, **block_kwargs | |
| ) | |
| self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) | |
| self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| # to be compatible with lower version pytorch | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) | |
| def forward(self, x, y, t, mask=None, HW=None, **kwargs): | |
| B, N, C = x.shape | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1) | |
| x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW)) | |
| x = x + self.cross_attn(x, y, mask) | |
| x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
| return x | |
| ### Core PixArt Model ### | |
| class PixArtMS(PixArt): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| input_size=32, | |
| patch_size=2, | |
| in_channels=4, | |
| hidden_size=1152, | |
| depth=28, | |
| num_heads=16, | |
| mlp_ratio=4.0, | |
| class_dropout_prob=0.1, | |
| learn_sigma=True, | |
| pred_sigma=True, | |
| drop_path: float = 0., | |
| caption_channels=4096, | |
| pe_interpolation=None, | |
| pe_precision=None, | |
| config=None, | |
| model_max_length=120, | |
| micro_condition=True, | |
| qk_norm=False, | |
| kv_compress_config=None, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| input_size=input_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| hidden_size=hidden_size, | |
| depth=depth, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| class_dropout_prob=class_dropout_prob, | |
| learn_sigma=learn_sigma, | |
| pred_sigma=pred_sigma, | |
| drop_path=drop_path, | |
| pe_interpolation=pe_interpolation, | |
| config=config, | |
| model_max_length=model_max_length, | |
| qk_norm=qk_norm, | |
| kv_compress_config=kv_compress_config, | |
| **kwargs, | |
| ) | |
| self.dtype = torch.get_default_dtype() | |
| self.h = self.w = 0 | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.t_block = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
| ) | |
| self.x_embedder = PatchEmbed(patch_size, in_channels, hidden_size, bias=True) | |
| self.y_embedder = CaptionEmbedder(in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length) | |
| self.micro_conditioning = micro_condition | |
| if self.micro_conditioning: | |
| self.csize_embedder = SizeEmbedder(hidden_size//3) # c_size embed | |
| self.ar_embedder = SizeEmbedder(hidden_size//3) # aspect ratio embed | |
| drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
| if kv_compress_config is None: | |
| kv_compress_config = { | |
| 'sampling': None, | |
| 'scale_factor': 1, | |
| 'kv_compress_layer': [], | |
| } | |
| self.blocks = nn.ModuleList([ | |
| PixArtMSBlock( | |
| hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], | |
| input_size=(input_size // patch_size, input_size // patch_size), | |
| sampling=kv_compress_config['sampling'], | |
| sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1, | |
| qk_norm=qk_norm, | |
| ) | |
| for i in range(depth) | |
| ]) | |
| self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
| def forward_raw(self, x, t, y, mask=None, data_info=None, **kwargs): | |
| """ | |
| Original forward pass of PixArt. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) tensor of class labels | |
| """ | |
| bs = x.shape[0] | |
| x = x.to(self.dtype) | |
| timestep = t.to(self.dtype) | |
| y = y.to(self.dtype) | |
| pe_interpolation = self.pe_interpolation | |
| if pe_interpolation is None or self.pe_precision is not None: | |
| # calculate pe_interpolation on-the-fly | |
| pe_interpolation = round((x.shape[-1]+x.shape[-2])/2.0 / (512/8.0), self.pe_precision or 0) | |
| self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size | |
| pos_embed = torch.from_numpy( | |
| get_2d_sincos_pos_embed( | |
| self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=pe_interpolation, | |
| base_size=self.base_size | |
| ) | |
| ).unsqueeze(0).to(device=x.device, dtype=self.dtype) | |
| x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
| t = self.t_embedder(timestep) # (N, D) | |
| if self.micro_conditioning: | |
| c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype) | |
| csize = self.csize_embedder(c_size, bs) # (N, D) | |
| ar = self.ar_embedder(ar, bs) # (N, D) | |
| t = t + torch.cat([csize, ar], dim=1) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training) # (N, D) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = [y.shape[2]] * y.shape[0] | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| for block in self.blocks: | |
| x = auto_grad_checkpoint(block, x, y, t0, y_lens, (self.h, self.w), **kwargs) # (N, T, D) #support grad checkpoint | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x) # (N, out_channels, H, W) | |
| return x | |
| def forward(self, x, timesteps, context, img_hw=None, aspect_ratio=None, **kwargs): | |
| """ | |
| Forward pass that adapts comfy input to original forward function | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| timesteps: (N,) tensor of diffusion timesteps | |
| context: (N, 1, 120, C) conditioning | |
| img_hw: height|width conditioning | |
| aspect_ratio: aspect ratio conditioning | |
| """ | |
| ## size/ar from cond with fallback based on the latent image shape. | |
| bs = x.shape[0] | |
| data_info = {} | |
| if img_hw is None: | |
| data_info["img_hw"] = torch.tensor( | |
| [[x.shape[2]*8, x.shape[3]*8]], | |
| dtype=self.dtype, | |
| device=x.device | |
| ).repeat(bs, 1) | |
| else: | |
| data_info["img_hw"] = img_hw.to(dtype=x.dtype, device=x.device) | |
| if aspect_ratio is None or True: | |
| data_info["aspect_ratio"] = torch.tensor( | |
| [[x.shape[2]/x.shape[3]]], | |
| dtype=self.dtype, | |
| device=x.device | |
| ).repeat(bs, 1) | |
| else: | |
| data_info["aspect_ratio"] = aspect_ratio.to(dtype=x.dtype, device=x.device) | |
| ## Still accepts the input w/o that dim but returns garbage | |
| if len(context.shape) == 3: | |
| context = context.unsqueeze(1) | |
| ## run original forward pass | |
| out = self.forward_raw( | |
| x = x.to(self.dtype), | |
| t = timesteps.to(self.dtype), | |
| y = context.to(self.dtype), | |
| data_info=data_info, | |
| ) | |
| ## only return EPS | |
| out = out.to(torch.float) | |
| eps, rest = out[:, :self.in_channels], out[:, self.in_channels:] | |
| return eps | |
| def unpatchify(self, x): | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| c = self.out_channels | |
| p = self.x_embedder.patch_size[0] | |
| assert self.h * self.w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c)) | |
| x = torch.einsum('nhwpqc->nchpwq', x) | |
| imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p)) | |
| return imgs | |