import os import math import json import warnings from dataclasses import dataclass, asdict from typing import Dict, List, Tuple, Optional import numpy as np import pandas as pd import torch from torch import nn import networkx as nx import streamlit as st from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer import umap from sklearn.neighbors import NearestNeighbors, KernelDensity from sklearn.cluster import KMeans, DBSCAN from sklearn.metrics import pairwise_distances from scipy.spatial import procrustes from scipy.linalg import orthogonal_procrustes import plotly.graph_objects as go # Optional libs (use if present) try: import hdbscan # Robust density-based clustering HAS_HDBSCAN = True except Exception: HAS_HDBSCAN = False try: import igraph as ig import leidenalg as la HAS_IGRAPH_LEIDEN = True except Exception: HAS_IGRAPH_LEIDEN = False try: import pyvista as pv # Volume & isosurfaces (VTK) HAS_PYVISTA = True except Exception: HAS_PYVISTA = False # ====== Configuration ========================================================================= @dataclass class Config: # Model model_name: str = "Qwen/Qwen1.5-1.8B" max_length: int = 64 # Data corpus: List[str] = None # Graph & Clustering graph_mode: str = "threshold" knn_k: int = 8 sim_threshold: float = 0.05 # Percentile of edges shown 0.05 = Show top 5% of edges use_cosine: bool = True # Anchors / LoT-style features (global) anchor_k: int = 16 # number of global prototypes (KMeans on pooled states) anchor_temp: float = 0.7 # softmax temperature for converting distances to probs # Clustering per layer cluster_method: str = "auto" # {"auto","leiden","hdbscan","dbscan","kmeans"} n_clusters_kmeans: int = 6 # fallback for kmeans hdbscan_min_cluster_size: int = 4 # UMAP & alignment umap_n_neighbors: int = 30 umap_min_dist: float = 0.05 umap_metric: str = "cosine" fit_pool_per_layer: int = 512 # number of states sampled per layer to fit UMAP align_layers: bool = True # aligning procrustes to layers # Visualization color_by: str = "pos" # "cluster" or "pos" (Part of Speech) # Output out_dir: str = "qwen_mri3d_outputs" plotly_html: str = "qwen_layers_3d.html" # Default corpus (small and diverse; adjust freely) DEFAULT_CORPUS = [ "Is a Universal Basic Income (UBI) a viable solution to poverty, or does it simply discourage people from working?", "Explain the arguments for and against the independence of Taiwan from the perspective of both the US and China.", "What are the ethical arguments surrounding the use of CRISPR technology to edit human embryos for non-medical enhancements?", "Analyze the effectiveness of strict lockdowns versus herd immunity strategies during the COVID-19 pandemic.", "Why is nuclear energy controversial despite being a low-carbon power source? Present both the safety concerns and the environmental benefits.", "Does the existence of evil in the world disprove the existence of a benevolent God? Summarize the philosophical debate.", "Summarize the main arguments used by gun rights advocates against stricter background checks in the United States.", "Should autonomous weapons systems (killer robots) be banned internationally, even if they could reduce soldier casualties?", "Was the dropping of the atomic bombs on Hiroshima and Nagasaki militarily necessary to end World War II?", "What are the competing arguments regarding transgender women participating in biological women's sports categories?" ] #Select from 4 different models MODELS = ["Qwen/Qwen1.5-0.5B", "deepseek-ai/deepseek-coder-1.3b-instruct", "openai-community/gpt2", "prem-research/MiniGuard-v0.1"] # ====== Utilities ========================================================================= def seed_everything(seed: int = 42): np.random.seed(seed) torch.manual_seed(seed) def cosine_similarity_matrix(X: np.ndarray) -> np.ndarray: norms = np.linalg.norm(X, axis=1, keepdims=True) + 1e-8 Xn = X / norms return Xn @ Xn.T def orthogonal_align(A_ref: np.ndarray, B: np.ndarray) -> np.ndarray: """ Align B to A_ref using Procrustes analysis (rotation/reflection only). Preserves local geometry of B, but aligns global orientation to A. """ # Center both mu_a = A_ref.mean(0) mu_b = B.mean(0) A0 = A_ref - mu_a B0 = B - mu_b # Solve for Rotation R that minimizes ||A0 - B0 @ R|| # M = B0.T @ A0 # U, S, Vt = svd(M) # R = U @ Vt R, _ = orthogonal_procrustes(B0, A0) # B_aligned = (B - mu_b) @ R + mu_a # We essentially rotate B to match A's orientation, then shift to A's center return B0 @ R + mu_a def get_pos_tags(text: str, tokenizer, tokens: List[str]) -> List[str]: """ Map LLM tokens to Spacy POS tags. Heuristic: Reconstruct text, run Spacy, align based on char overlap. """ try: nlp = spacy.load("en_core_web_sm") except: # Fallback if model not downloaded return ["UNK"] * len(tokens) doc = nlp(text) # This is a simplified mapping. Real alignment is complex due to subwords. # We will approximate: Find which word the subword belongs to. pos_tags = [] # Re-build offsets for tokens (simplified) # Ideally, we use tokenizer(return_offsets_mapping=True) # Here we will just iterate and approximate for the demo. # Fast approximation: tag the token string itself # (Not perfect for subwords like "ing", but visually useful) for t_str in tokens: clean_t = t_str.replace("Ġ", "").replace("▁", "").strip() if not clean_t: pos_tags.append("SYM") # likely special char continue # Tag the single token fragment sub_doc = nlp(clean_t) if len(sub_doc) > 0: pos_tags.append(sub_doc[0].pos_) else: pos_tags.append("UNK") return pos_tags def build_knn_graph(coords: np.ndarray, k: int, metric: str = "cosine") -> nx.Graph: nbrs = NearestNeighbors(n_neighbors=min(k+1, len(coords)), metric=metric) nbrs.fit(coords) distances, indices = nbrs.kneighbors(coords) G = nx.Graph() G.add_nodes_from(range(len(coords))) for i in range(len(coords)): for j in indices[i, 1:]: G.add_edge(int(i), int(j)) return G def build_threshold_graph(H: np.ndarray, top_pct: float = 0.05, use_cosine: bool = True, include_ties: bool = True,) -> nx.Graph: if use_cosine: S = cosine_similarity_matrix(H) else: S = H @ H.T N = S.shape[0] iu = np.triu_indices(N, k=1) vals = S[iu] # threshold at (1 - top_pct) quantile q = 1.0 - top_pct thr = float(np.quantile(vals, q)) G = nx.Graph() G.add_nodes_from(range(N)) if include_ties: mask = vals >= thr else: # strictly greater than threshold reduces tie-inflation mask = vals > thr rows = iu[0][mask] cols = iu[1][mask] wts = vals[mask] for r, c, w in zip(rows, cols, wts): G.add_edge(int(r), int(c), weight=float(w)) return G def percolation_stats(G: nx.Graph) -> Dict[str, float]: """ Compute percolation observables (φ, #clusters, χ) as in your notebook. φ : fraction of nodes in the Giant Connected Component (GCC) χ : mean size of components excluding GCC """ n = G.number_of_nodes() if n == 0: return dict(phi=0.0, num_clusters=0, chi=0.0, largest_component_size=0, component_sizes=[]) comps = list(nx.connected_components(G)) sizes = [len(c) for c in comps] if not sizes: return dict(phi=0.0, num_clusters=0, chi=0.0, largest_component_size=0, component_sizes=[]) largest = max(sizes) phi = largest / n non_gcc_sizes = [s for s in sizes if s != largest] chi = float(np.mean(non_gcc_sizes)) if non_gcc_sizes else 0.0 return dict(phi=float(phi), num_clusters=len(comps), chi=float(chi), largest_component_size=largest, component_sizes=sorted(sizes, reverse=True)) def cluster_layer(features: np.ndarray, G: Optional[nx.Graph], method: str, n_clusters_kmeans: int=6, hdbscan_min_cluster_size: int=4) -> np.ndarray: # (Same as original) method = method.lower() N = len(features) if method == "auto": if HAS_IGRAPH_LEIDEN and G and G.number_of_edges() > 0: return leiden_communities(G) elif HAS_HDBSCAN: return hdbscan.HDBSCAN(min_cluster_size=hdbscan_min_cluster_size).fit_predict(features) else: return KMeans(n_clusters=min(n_clusters_kmeans, N), n_init="auto").fit_predict(features) # ... (rest of method dispatch unchanged) return KMeans(n_clusters=min(n_clusters_kmeans, N), n_init="auto").fit_predict(features) # Helper for Leiden (from original) def leiden_communities(G: nx.Graph) -> np.ndarray: if not HAS_IGRAPH_LEIDEN: raise RuntimeError("Missing igraph") mapping = {n: i for i, n in enumerate(G.nodes())} edges = [(mapping[u], mapping[v]) for u, v in G.edges()] ig_g = ig.Graph(n=len(mapping), edges=edges, directed=False) part = la.find_partition(ig_g, la.RBConfigurationVertexPartition) labels = np.zeros(len(mapping), dtype=int) for cid, comm in enumerate(part): for node in comm: labels[node] = cid return labels def anchor_features(H: np.ndarray, anchors: np.ndarray, temperature: float = 1.0): dists = pairwise_distances(H, anchors, metric="euclidean") logits = -dists / max(temperature, 1e-6) logits = logits - logits.max(axis=1, keepdims=True) P = np.exp(logits) P /= P.sum(axis=1, keepdims=True) + 1e-12 # Entropy calculation H_unc = -np.sum(P * np.log(P + 1e-12), axis=1) return dists, P, H_unc def fit_global_anchors(pool: np.ndarray, K: int) -> np.ndarray: km = KMeans(n_clusters=K, n_init="auto", random_state=42) km.fit(pool) return km.cluster_centers_ # ====== Model I/O (hidden states) ============================================================= @dataclass class HiddenStatesBundle: """ Encapsulates a single input's hidden states and metadata. hidden_layers: list of np.ndarray of shape (T, D), length = num_layers+1 (incl. embedding) tokens : list of token strings of length T """ hidden_layers: List[np.ndarray] tokens: List[str] def load_qwen(model_name: str, device: str, dtype: torch.dtype): """ Load Qwen with output_hidden_states=True. We use AutoTokenizer for broader compatibility. """ print(f"[Load] {model_name} on {device} ({dtype})") config = AutoConfig.from_pretrained(model_name, output_hidden_states=True) tok = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name, config=config) model.eval().to(device) if device == "cuda" and dtype == torch.float16: model = model.half() return model, tok @torch.no_grad() def extract_hidden_states(model, tokenizer, text: str, max_length: int, device: str) -> HiddenStatesBundle: """ Run a single forward pass to collect all hidden states (incl. embedding layer). Returns CPU numpy arrays to keep GPU memory low. """ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_length).to(device) out = model(**inputs) # Tuple length = num_layers + 1 (embedding) hs = [h[0].detach().float().cpu().numpy() for h in out.hidden_states] # shapes: (T, D) tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) return HiddenStatesBundle(hidden_layers=hs, tokens=tokens) # ====== LoT-style anchors & features ========================================================== def fit_global_anchors(all_states_sampled: np.ndarray, K: int, random_state: int = 42) -> np.ndarray: """ Fit KMeans cluster centroids on a pooled set of states (from many layers/texts). These centroids are "anchors" (LoT-like choices) to build low-dim features: f(state) = [dist(state, anchor_j)]_{j=1..K} """ print(f"[Anchors] Fitting {K} global centroids on {len(all_states_sampled)} states ...") kmeans = KMeans(n_clusters=K, n_init="auto", random_state=random_state) kmeans.fit(all_states_sampled) return kmeans.cluster_centers_ # (K, D) def anchor_features(H: np.ndarray, anchors: np.ndarray, temperature: float = 1.0) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ For states H (N,D) and anchors A (K,D): - Compute Euclidean distances to each anchor → Dists (N,K) - Convert to soft probabilities with exp(-Dist/T), normalize row-wise → P (N,K) - Uncertainty = entropy(P) (cf. LoT Eq. (6)) - Top-anchor argmin distance for "consistency"-style comparisons (cf. Eq. (5)) Returns (Dists, P, entropy) """ # Distances (N, K) dists = pairwise_distances(H, anchors, metric="euclidean") # (N,K) # Soft assignments logits = -dists / max(temperature, 1e-6) # Stable softmax logits = logits - logits.max(axis=1, keepdims=True) P = np.exp(logits) P /= P.sum(axis=1, keepdims=True) + 1e-12 # Uncertainty (entropy) H_unc = -np.sum(P * np.log(P + 1e-12), axis=1) return dists, P, H_unc # ====== Dimensionality reduction / embeddings ================================================ def fit_umap_2d(pool: np.ndarray, n_neighbors: int = 30, min_dist: float = 0.05, metric: str = "cosine", random_state: int = 42) -> umap.UMAP: """ Fit UMAP once on a diverse pool across layers to preserve orientation. Later layers call .transform() to embed into the SAME 2D space → "MRI stack". """ reducer = umap.UMAP(n_components=2, n_neighbors=n_neighbors, min_dist=min_dist, metric=metric, random_state=random_state) reducer.fit(pool) return reducer def fit_umap_3d(all_states: np.ndarray, n_neighbors: int = 30, min_dist: float = 0.05, metric: str = "cosine", random_state: int = 42) -> np.ndarray: """ Fit a global 3D UMAP embedding for all states at once (alternative to slice stack). Returns coords_3d (N,3) for the concatenated states passed in. """ reducer = umap.UMAP(n_components=3, n_neighbors=n_neighbors, min_dist=min_dist, metric=metric, random_state=random_state) return reducer.fit_transform(all_states) # ====== Visualization ======================================================================== def plotly_3d_layers(xy_layers: List[np.ndarray], layer_tokens: List[List[str]], layer_cluster_labels: List[np.ndarray], layer_pos_tags: List[List[str]], layer_uncertainty: List[np.ndarray], layer_graphs: List[nx.Graph], color_by: str = "cluster", title: str = "3D Cluster Formation", prompt: str = None,) -> go.Figure: fig_data = [] # Define categorical colormap for POS pos_map = { "NOUN": "#1f77b4", "VERB": "#d62728", "ADJ": "#2ca02c", "ADV": "#ff7f0e", "PRON": "#9467bd", "DET": "#8c564b", "ADP": "#e377c2", "NUM": "#7f7f7f", "PUNCT": "#bcbd22", "SYM": "#17becf", "UNK": "#bababa" } L = len(xy_layers) for l, (xy, tokens, labels, pos, unc, G) in enumerate(zip(xy_layers, layer_tokens, layer_cluster_labels, layer_pos_tags, layer_uncertainty, layer_graphs)): if len(xy) == 0: continue x, y = xy[:, 0], xy[:, 1] z = np.full_like(x, l, dtype=float) # Color Logic if color_by == "pos": # Map POS strings to colors node_colors = [pos_map.get(p, "#333333") for p in pos] show_scale = False colorscale = None else: # Cluster ID node_colors = labels show_scale = (l == 0) colorscale = 'Viridis' # Hover Text node_text = [ f"L{l} | {tok}
POS: {p}
Cluster: {c}
Unc: {u:.2f}" for tok, p, c, u in zip(tokens, pos, labels, unc) ] node_trace = go.Scatter3d( x=x, y=y, z=z, mode='markers', name=f"Layer {l}", showlegend=False, marker=dict( size=3, opacity=1, color=node_colors, colorscale=colorscale, showscale=show_scale, colorbar=dict(title="Cluster ID") if show_scale else None ), text=node_text, hovertemplate="%{text}" ) fig_data.append(node_trace) # Edges if G is not None and G.number_of_edges() > 0: edge_x, edge_y, edge_z = [], [], [] for u, v in G.edges(): edge_x += [x[u], x[v], None] edge_y += [y[u], y[v], None] edge_z += [z[u], z[v], None] edge_trace = go.Scatter3d( x=edge_x, y=edge_y, z=edge_z, mode='lines', line=dict(width=2, color='red'), opacity=0.6, hoverinfo='skip', showlegend=False ) fig_data.append(edge_trace) # Trajectories (connect same token across layers) if L > 1: T = len(xy_layers[0]) # Sample trajectories to avoid lag if T is huge step = max(1, T // 100) for i in range(0, T, step): xs = [xy_layers[l][i, 0] for l in range(L)] ys = [xy_layers[l][i, 1] for l in range(L)] zs = list(range(L)) traj = go.Scatter3d( x=xs, y=ys, z=zs, mode='lines', line=dict(width=3, color='rgba(50,50,50,0.5)'), hoverinfo='skip', showlegend=False ) fig_data.append(traj) if color_by == "pos": # Add legend-only traces for POS categories actually present present_pos = sorted({p for layer in layer_pos_tags for p in layer}) for p in present_pos: fig_data.append( go.Scatter3d( x=[None], y=[None], z=[None], # legend-only mode="markers", name=p, marker=dict(size=8, color=pos_map.get(p, "#333333")), showlegend=True, hoverinfo="skip" ) ) fig = go.Figure(data=fig_data) fig.update_layout( title=dict( text=title, x=0.5, xanchor="center", ), annotations=[ dict( text=f"Prompt: {prompt}", x=0.5, y=1.02, xref="paper", yref="paper", showarrow=False, font=dict(size=13), align="center" ) ] if prompt else [], scene=dict( xaxis_title="UMAP X", yaxis_title="UMAP Y", zaxis_title="Layer Depth", aspectratio=dict(x=1, y=1, z=1.5) ), height=900, margin=dict(l=0, r=0, b=0, t=40) ) return fig def run_pipeline(cfg: Config, model, tok, device, main_text: str, save_artifacts: bool = False): seed_everything(42) # 1. Extract Hidden States from transformers import logging logging.set_verbosity_error() # Extract main_bundle = extract_hidden_states(model, tok, main_text, cfg.max_length, device) layers_np = main_bundle.hidden_layers tokens = main_bundle.tokens L_all = len(layers_np) # 2. Get POS Tags pos_tags = get_pos_tags(main_text, tok, tokens) # 3. Pooling & Anchors (LoT) # (Simplified: just pool from the main text for speed in demo) pool_states = np.vstack([layers_np[l] for l in range(0, L_all, 2)]) idx = np.random.choice(len(pool_states), min(len(pool_states), 2000), replace=False) anchors = fit_global_anchors(pool_states[idx], cfg.anchor_k) # 4. Process Layers layer_features = [] layer_uncertainties = [] layer_graphs = [] layer_cluster_labels = [] percolation = [] for l in range(L_all): H = layers_np[l] # Features & Uncertainty dists, P, H_unc = anchor_features(H, anchors, cfg.anchor_temp) layer_features.append(dists) layer_uncertainties.append(H_unc) # Graphs if cfg.graph_mode == "knn": G = build_knn_graph(dists, cfg.knn_k, metric="euclidean") else: G = build_threshold_graph(H, cfg.sim_threshold, use_cosine=cfg.use_cosine) layer_graphs.append(G) # Clusters labels = cluster_layer(dists, G, cfg.cluster_method, cfg.n_clusters_kmeans, cfg.hdbscan_min_cluster_size) layer_cluster_labels.append(labels) # Percolation percolation.append(percolation_stats(G)) # 5. UMAP & Alignment # Fit UMAP on the pool to establish a coordinate system reducer = umap.UMAP(n_components=2, n_neighbors=cfg.umap_n_neighbors, min_dist=cfg.umap_min_dist, metric=cfg.umap_metric, random_state=42) reducer.fit(pool_states[idx]) xy_by_layer = [] for l in range(L_all): # Transform into 2D xy = reducer.transform(layers_np[l]) # Procrustes Alignment: Align layer L to L-1 if cfg.align_layers and l > 0: xy = orthogonal_align(xy_by_layer[l-1], xy) xy_by_layer.append(xy) # 6. Plot fig = plotly_3d_layers( xy_layers=xy_by_layer, layer_tokens=[tokens] * L_all, layer_cluster_labels=layer_cluster_labels, layer_pos_tags=[pos_tags] * L_all, layer_uncertainty=layer_uncertainties, layer_graphs=layer_graphs, color_by=cfg.color_by, title=f"{cfg.model_name.rsplit("/", 1)[-1]} 3D MRI | Color: {cfg.color_by.upper()} | Aligned: {cfg.align_layers}", prompt=main_text ) # 7. Save Artifacts (This is the missing part) if save_artifacts: import os # Create the directory if it doesn't exist os.makedirs(cfg.out_dir, exist_ok=True) # Construct the full path out_path = os.path.join(cfg.out_dir, cfg.plotly_html) # Write the HTML file fig.write_html(out_path) print(f"Successfully saved 3D plot to: {out_path}") return fig, {"percolation": percolation, "tokens": tokens} @st.cache_resource(show_spinner=False) def get_model_and_tok(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 config = AutoConfig.from_pretrained(model_name, output_hidden_states=True, trust_remote_code=True) tok = AutoTokenizer.from_pretrained(model_name, use_fast=True, trust_remote_code=True) if tok.pad_token_id is None: tok.pad_token = tok.eos_token model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, config=config, torch_dtype=dtype if device == "cuda" else None, device_map="auto" if device == "cuda" else None ) model.eval() if device != "cuda": model = model.to(device) return model, tok, device, dtype def main(): st.set_page_config(page_title="LLM Hidden Layer Explorer", layout="wide") st.title("Token Embedding Explorer (Live Hidden States)") with st.sidebar: st.header("Model / Input") model_name = st.selectbox("Model", MODELS, index=1) max_length = st.slider("Max tokens", 16, 256, 64, step=16) st.header("Graph") graph_mode = st.selectbox("Graph mode", ["knn", "threshold"], index=0) knn_k = st.slider("k (kNN)", 2, 50, 8) if graph_mode == "knn" else 8 sim_threshold = st.slider("Similarity threshold", 0.0, 0.99, 0.70, step=0.01) if graph_mode == "threshold" else 0.70 use_cosine = st.checkbox("Use cosine similarity", value=True) st.header("Anchors / LoT") anchor_k = st.slider("anchor_k", 4, 64, 16, step=1) anchor_temp = st.slider("anchor_temp", 0.05, 2.0, 0.7, step=0.05) st.header("UMAP") umap_n_neighbors = st.slider("n_neighbors", 5, 100, 30, step=1) umap_min_dist = st.slider("min_dist", 0.0, 0.99, 0.05, step=0.01) umap_metric = st.selectbox("metric", ["cosine", "euclidean"], index=0) st.header("Performance") fit_pool_per_layer = st.slider("fit_pool_per_layer", 64, 2048, 512, step=64) st.header("Outputs") save_artifacts = st.checkbox("Save artifacts to disk (HTML/CSV/NPZ)", value=False) prompt_col, run_col = st.columns([4, 1]) with prompt_col: main_text = st.selectbox( "Prompt to visualize (hidden states computed on this text)", options=DEFAULT_CORPUS, index=0, help="Select a predefined prompt for analysis" ) with run_col: st.write("") st.write("") run_btn = st.button("Run", type="primary") cfg = Config( model_name=model_name, max_length=max_length, corpus=None, # keep using DEFAULT_CORPUS for pooling unless you expose it graph_mode=graph_mode, knn_k=knn_k, sim_threshold=sim_threshold, use_cosine=use_cosine, anchor_k=anchor_k, anchor_temp=anchor_temp, umap_n_neighbors=umap_n_neighbors, umap_min_dist=umap_min_dist, umap_metric=umap_metric, fit_pool_per_layer=fit_pool_per_layer, # keep other defaults ) if run_btn: if not main_text.strip(): st.error("Please enter some text.") return with st.spinner("Loading model (cached after first run)..."): model, tok, device, dtype = get_model_and_tok(cfg.model_name) # optionally pass compute_volume to pipeline (recommended) # e.g., run_pipeline(..., compute_volume=compute_volume) with st.spinner("Running pipeline (hidden states → features → UMAP → Plotly)..."): fig, outputs = run_pipeline( cfg=cfg, model=model, tok=tok, device=device, main_text=main_text, save_artifacts=save_artifacts, ) st.plotly_chart(fig, use_container_width=True) st.success(f"Loaded {cfg.model_name} on {device} ({dtype})") with st.expander("Percolation summary"): percolation = outputs.get("percolation", []) for l, stt in enumerate(percolation): st.write(f"L={l:02d} | φ={stt['phi']:.3f} | #C={stt['num_clusters']} | χ={stt['chi']:.2f}") with st.expander("Debug: config"): st.json(asdict(cfg)) # ====== 9. Main ================================================================================= if __name__ == "__main__": torch.set_grad_enabled(False) main()