Spaces:
Build error
Build error
File size: 47,428 Bytes
d6703a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 |
import logging
import os
from typing import Awaitable, Optional, Union
import requests
import aiohttp
import asyncio
import hashlib
from concurrent.futures import ThreadPoolExecutor
import time
import re
from urllib.parse import quote
from huggingface_hub import snapshot_download
from langchain_classic.retrievers import (
ContextualCompressionRetriever,
EnsembleRetriever,
)
from langchain_community.retrievers import BM25Retriever
from langchain_core.documents import Document
from open_webui.config import VECTOR_DB
from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT
from open_webui.models.users import UserModel
from open_webui.models.files import Files
from open_webui.models.knowledge import Knowledges
from open_webui.models.chats import Chats
from open_webui.models.notes import Notes
from open_webui.models.access_grants import AccessGrants
from open_webui.retrieval.vector.main import GetResult
from open_webui.utils.headers import include_user_info_headers
from open_webui.utils.misc import get_message_list
from open_webui.retrieval.web.utils import get_web_loader
from open_webui.retrieval.loaders.youtube import YoutubeLoader
from open_webui.env import (
AIOHTTP_CLIENT_TIMEOUT,
OFFLINE_MODE,
ENABLE_FORWARD_USER_INFO_HEADERS,
AIOHTTP_CLIENT_SESSION_SSL,
)
from open_webui.config import (
RAG_EMBEDDING_QUERY_PREFIX,
RAG_EMBEDDING_CONTENT_PREFIX,
RAG_EMBEDDING_PREFIX_FIELD_NAME,
)
log = logging.getLogger(__name__)
from typing import Any
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.retrievers import BaseRetriever
def is_youtube_url(url: str) -> bool:
youtube_regex = r"^(https?://)?(www\.)?(youtube\.com|youtu\.be)/.+$"
return re.match(youtube_regex, url) is not None
def get_loader(request, url: str):
if is_youtube_url(url):
return YoutubeLoader(
url,
language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
)
else:
return get_web_loader(
url,
verify_ssl=request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,
requests_per_second=request.app.state.config.WEB_LOADER_CONCURRENT_REQUESTS,
trust_env=request.app.state.config.WEB_SEARCH_TRUST_ENV,
)
def get_content_from_url(request, url: str) -> str:
loader = get_loader(request, url)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
return content, docs
class VectorSearchRetriever(BaseRetriever):
collection_name: Any
embedding_function: Any
top_k: int
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> list[Document]:
"""Get documents relevant to a query.
Args:
query: String to find relevant documents for.
run_manager: The callback handler to use.
Returns:
List of relevant documents.
"""
return []
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
) -> list[Document]:
embedding = await self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
result = VECTOR_DB_CLIENT.search(
collection_name=self.collection_name,
vectors=[embedding],
limit=self.top_k,
)
ids = result.ids[0]
metadatas = result.metadatas[0]
documents = result.documents[0]
results = []
for idx in range(len(ids)):
results.append(
Document(
metadata=metadatas[idx],
page_content=documents[idx],
)
)
return results
def query_doc(
collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
):
try:
log.debug(f"query_doc:doc {collection_name}")
result = VECTOR_DB_CLIENT.search(
collection_name=collection_name,
vectors=[query_embedding],
limit=k,
)
if result:
log.info(f"query_doc:result {result.ids} {result.metadatas}")
return result
except Exception as e:
log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
raise e
def get_doc(collection_name: str, user: UserModel = None):
try:
log.debug(f"get_doc:doc {collection_name}")
result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
if result:
log.info(f"query_doc:result {result.ids} {result.metadatas}")
return result
except Exception as e:
log.exception(f"Error getting doc {collection_name}: {e}")
raise e
def get_enriched_texts(collection_result: GetResult) -> list[str]:
enriched_texts = []
for idx, text in enumerate(collection_result.documents[0]):
metadata = collection_result.metadatas[0][idx]
metadata_parts = [text]
# Add filename (repeat twice for extra weight in BM25 scoring)
if metadata.get("name"):
filename = metadata["name"]
filename_tokens = (
filename.replace("_", " ").replace("-", " ").replace(".", " ")
)
metadata_parts.append(
f"Filename: {filename} {filename_tokens} {filename_tokens}"
)
# Add title if available
if metadata.get("title"):
metadata_parts.append(f"Title: {metadata['title']}")
# Add document section headings if available (from markdown splitter)
if metadata.get("headings") and isinstance(metadata["headings"], list):
headings = " > ".join(str(h) for h in metadata["headings"])
metadata_parts.append(f"Section: {headings}")
# Add source URL/path if available
if metadata.get("source"):
metadata_parts.append(f"Source: {metadata['source']}")
# Add snippet for web search results
if metadata.get("snippet"):
metadata_parts.append(f"Snippet: {metadata['snippet']}")
enriched_texts.append(" ".join(metadata_parts))
return enriched_texts
async def query_doc_with_hybrid_search(
collection_name: str,
collection_result: GetResult,
query: str,
embedding_function,
k: int,
reranking_function,
k_reranker: int,
r: float,
hybrid_bm25_weight: float,
enable_enriched_texts: bool = False,
) -> dict:
try:
# First check if collection_result has the required attributes
if (
not collection_result
or not hasattr(collection_result, "documents")
or not hasattr(collection_result, "metadatas")
):
log.warning(f"query_doc_with_hybrid_search:no_docs {collection_name}")
return {"documents": [], "metadatas": [], "distances": []}
# Now safely check the documents content after confirming attributes exist
if (
not collection_result.documents
or len(collection_result.documents) == 0
or not collection_result.documents[0]
):
log.warning(f"query_doc_with_hybrid_search:no_docs {collection_name}")
return {"documents": [], "metadatas": [], "distances": []}
log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")
bm25_texts = (
get_enriched_texts(collection_result)
if enable_enriched_texts
else collection_result.documents[0]
)
bm25_retriever = BM25Retriever.from_texts(
texts=bm25_texts,
metadatas=collection_result.metadatas[0],
)
bm25_retriever.k = k
vector_search_retriever = VectorSearchRetriever(
collection_name=collection_name,
embedding_function=embedding_function,
top_k=k,
)
if hybrid_bm25_weight <= 0:
ensemble_retriever = EnsembleRetriever(
retrievers=[vector_search_retriever], weights=[1.0]
)
elif hybrid_bm25_weight >= 1:
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever], weights=[1.0]
)
else:
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, vector_search_retriever],
weights=[hybrid_bm25_weight, 1.0 - hybrid_bm25_weight],
)
compressor = RerankCompressor(
embedding_function=embedding_function,
top_n=k_reranker,
reranking_function=reranking_function,
r_score=r,
)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=ensemble_retriever
)
result = await compression_retriever.ainvoke(query)
distances = [d.metadata.get("score") for d in result]
documents = [d.page_content for d in result]
metadatas = [d.metadata for d in result]
# retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
if k < k_reranker:
sorted_items = sorted(
zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
)
sorted_items = sorted_items[:k]
if sorted_items:
distances, documents, metadatas = map(list, zip(*sorted_items))
else:
distances, documents, metadatas = [], [], []
result = {
"distances": [distances],
"documents": [documents],
"metadatas": [metadatas],
}
log.info(
"query_doc_with_hybrid_search:result "
+ f'{result["metadatas"]} {result["distances"]}'
)
return result
except Exception as e:
log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")
raise e
def merge_get_results(get_results: list[dict]) -> dict:
# Initialize lists to store combined data
combined_documents = []
combined_metadatas = []
combined_ids = []
for data in get_results:
combined_documents.extend(data["documents"][0])
combined_metadatas.extend(data["metadatas"][0])
combined_ids.extend(data["ids"][0])
# Create the output dictionary
result = {
"documents": [combined_documents],
"metadatas": [combined_metadatas],
"ids": [combined_ids],
}
return result
def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
# Initialize lists to store combined data
combined = dict() # To store documents with unique document hashes
for data in query_results:
if (
len(data.get("distances", [])) == 0
or len(data.get("documents", [])) == 0
or len(data.get("metadatas", [])) == 0
):
continue
distances = data["distances"][0]
documents = data["documents"][0]
metadatas = data["metadatas"][0]
for distance, document, metadata in zip(distances, documents, metadatas):
if isinstance(document, str):
doc_hash = hashlib.sha256(
document.encode()
).hexdigest() # Compute a hash for uniqueness
if doc_hash not in combined.keys():
combined[doc_hash] = (distance, document, metadata)
continue # if doc is new, no further comparison is needed
# if doc is alredy in, but new distance is better, update
if distance > combined[doc_hash][0]:
combined[doc_hash] = (distance, document, metadata)
combined = list(combined.values())
# Sort the list based on distances
combined.sort(key=lambda x: x[0], reverse=True)
# Slice to keep only the top k elements
sorted_distances, sorted_documents, sorted_metadatas = (
zip(*combined[:k]) if combined else ([], [], [])
)
# Create and return the output dictionary
return {
"distances": [list(sorted_distances)],
"documents": [list(sorted_documents)],
"metadatas": [list(sorted_metadatas)],
}
def get_all_items_from_collections(collection_names: list[str]) -> dict:
results = []
for collection_name in collection_names:
if collection_name:
try:
result = get_doc(collection_name=collection_name)
if result is not None:
results.append(result.model_dump())
except Exception as e:
log.exception(f"Error when querying the collection: {e}")
else:
pass
return merge_get_results(results)
async def query_collection(
collection_names: list[str],
queries: list[str],
embedding_function,
k: int,
) -> dict:
results = []
error = False
def process_query_collection(collection_name, query_embedding):
try:
if collection_name:
result = query_doc(
collection_name=collection_name,
k=k,
query_embedding=query_embedding,
)
if result is not None:
return result.model_dump(), None
return None, None
except Exception as e:
log.exception(f"Error when querying the collection: {e}")
return None, e
# Generate all query embeddings (in one call)
query_embeddings = await embedding_function(
queries, prefix=RAG_EMBEDDING_QUERY_PREFIX
)
log.debug(
f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections"
)
with ThreadPoolExecutor() as executor:
future_results = []
for query_embedding in query_embeddings:
for collection_name in collection_names:
result = executor.submit(
process_query_collection, collection_name, query_embedding
)
future_results.append(result)
task_results = [future.result() for future in future_results]
for result, err in task_results:
if err is not None:
error = True
elif result is not None:
results.append(result)
if error and not results:
log.warning("All collection queries failed. No results returned.")
return merge_and_sort_query_results(results, k=k)
async def query_collection_with_hybrid_search(
collection_names: list[str],
queries: list[str],
embedding_function,
k: int,
reranking_function,
k_reranker: int,
r: float,
hybrid_bm25_weight: float,
enable_enriched_texts: bool = False,
) -> dict:
results = []
error = False
# Fetch collection data once per collection sequentially
# Avoid fetching the same data multiple times later
collection_results = {}
for collection_name in collection_names:
try:
log.debug(
f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"
)
collection_results[collection_name] = VECTOR_DB_CLIENT.get(
collection_name=collection_name
)
except Exception as e:
log.exception(f"Failed to fetch collection {collection_name}: {e}")
collection_results[collection_name] = None
log.info(
f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
)
async def process_query(collection_name, query):
try:
result = await query_doc_with_hybrid_search(
collection_name=collection_name,
collection_result=collection_results[collection_name],
query=query,
embedding_function=embedding_function,
k=k,
reranking_function=reranking_function,
k_reranker=k_reranker,
r=r,
hybrid_bm25_weight=hybrid_bm25_weight,
enable_enriched_texts=enable_enriched_texts,
)
return result, None
except Exception as e:
log.exception(f"Error when querying the collection with hybrid_search: {e}")
return None, e
# Prepare tasks for all collections and queries
# Avoid running any tasks for collections that failed to fetch data (have assigned None)
tasks = [
(collection_name, query)
for collection_name in collection_names
if collection_results[collection_name] is not None
for query in queries
]
# Run all queries in parallel using asyncio.gather
task_results = await asyncio.gather(
*[process_query(collection_name, query) for collection_name, query in tasks]
)
for result, err in task_results:
if err is not None:
error = True
elif result is not None:
results.append(result)
if error and not results:
raise Exception(
"Hybrid search failed for all collections. Using Non-hybrid search as fallback."
)
return merge_and_sort_query_results(results, k=k)
def generate_openai_batch_embeddings(
model: str,
texts: list[str],
url: str = "https://api.openai.com/v1",
key: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
)
json_data = {"input": texts, "model": model}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {key}",
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user:
headers = include_user_info_headers(headers, user)
r = requests.post(
f"{url}/embeddings",
headers=headers,
json=json_data,
)
r.raise_for_status()
data = r.json()
if "data" in data:
return [elem["embedding"] for elem in data["data"]]
else:
raise "Something went wrong :/"
except Exception as e:
log.exception(f"Error generating openai batch embeddings: {e}")
return None
async def agenerate_openai_batch_embeddings(
model: str,
texts: list[str],
url: str = "https://api.openai.com/v1",
key: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"agenerate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
)
form_data = {"input": texts, "model": model}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
form_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {key}",
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user:
headers = include_user_info_headers(headers, user)
async with aiohttp.ClientSession(
trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
) as session:
async with session.post(
f"{url}/embeddings",
headers=headers,
json=form_data,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as r:
r.raise_for_status()
data = await r.json()
if "data" in data:
return [item["embedding"] for item in data["data"]]
else:
raise Exception("Something went wrong :/")
except Exception as e:
log.exception(f"Error generating openai batch embeddings: {e}")
return None
def generate_azure_openai_batch_embeddings(
model: str,
texts: list[str],
url: str,
key: str = "",
version: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"generate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"
)
json_data = {"input": texts}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"
for _ in range(5):
headers = {
"Content-Type": "application/json",
"api-key": key,
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user:
headers = include_user_info_headers(headers, user)
r = requests.post(
url,
headers=headers,
json=json_data,
)
if r.status_code == 429:
retry = float(r.headers.get("Retry-After", "1"))
time.sleep(retry)
continue
r.raise_for_status()
data = r.json()
if "data" in data:
return [elem["embedding"] for elem in data["data"]]
else:
raise Exception("Something went wrong :/")
return None
except Exception as e:
log.exception(f"Error generating azure openai batch embeddings: {e}")
return None
async def agenerate_azure_openai_batch_embeddings(
model: str,
texts: list[str],
url: str,
key: str = "",
version: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"agenerate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"
)
form_data = {"input": texts}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
form_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
full_url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"
headers = {
"Content-Type": "application/json",
"api-key": key,
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user:
headers = include_user_info_headers(headers, user)
async with aiohttp.ClientSession(
trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
) as session:
async with session.post(
full_url,
headers=headers,
json=form_data,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as r:
r.raise_for_status()
data = await r.json()
if "data" in data:
return [item["embedding"] for item in data["data"]]
else:
raise Exception("Something went wrong :/")
except Exception as e:
log.exception(f"Error generating azure openai batch embeddings: {e}")
return None
def generate_ollama_batch_embeddings(
model: str,
texts: list[str],
url: str,
key: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
)
json_data = {"input": texts, "model": model}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {key}",
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user:
headers = include_user_info_headers(headers, user)
r = requests.post(
f"{url}/api/embed",
headers=headers,
json=json_data,
)
r.raise_for_status()
data = r.json()
if "embeddings" in data:
return data["embeddings"]
else:
raise "Something went wrong :/"
except Exception as e:
log.exception(f"Error generating ollama batch embeddings: {e}")
return None
async def agenerate_ollama_batch_embeddings(
model: str,
texts: list[str],
url: str,
key: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"agenerate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
)
form_data = {"input": texts, "model": model}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
form_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {key}",
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user:
headers = include_user_info_headers(headers, user)
async with aiohttp.ClientSession(
trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
) as session:
async with session.post(
f"{url}/api/embed",
headers=headers,
json=form_data,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as r:
r.raise_for_status()
data = await r.json()
if "embeddings" in data:
return data["embeddings"]
else:
raise Exception("Something went wrong :/")
except Exception as e:
log.exception(f"Error generating ollama batch embeddings: {e}")
return None
def get_embedding_function(
embedding_engine,
embedding_model,
embedding_function,
url,
key,
embedding_batch_size,
azure_api_version=None,
enable_async=True,
) -> Awaitable:
if embedding_engine == "":
# Sentence transformers: CPU-bound sync operation
async def async_embedding_function(query, prefix=None, user=None):
return await asyncio.to_thread(
(
lambda query, prefix=None: embedding_function.encode(
query,
batch_size=int(embedding_batch_size),
**({"prompt": prefix} if prefix else {}),
).tolist()
),
query,
prefix,
)
return async_embedding_function
elif embedding_engine in ["ollama", "openai", "azure_openai"]:
embedding_function = lambda query, prefix=None, user=None: generate_embeddings(
engine=embedding_engine,
model=embedding_model,
text=query,
prefix=prefix,
url=url,
key=key,
user=user,
azure_api_version=azure_api_version,
)
async def async_embedding_function(query, prefix=None, user=None):
if isinstance(query, list):
# Create batches
batches = [
query[i : i + embedding_batch_size]
for i in range(0, len(query), embedding_batch_size)
]
if enable_async:
log.debug(
f"generate_multiple_async: Processing {len(batches)} batches in parallel"
)
# Execute all batches in parallel
tasks = [
embedding_function(batch, prefix=prefix, user=user)
for batch in batches
]
batch_results = await asyncio.gather(*tasks)
else:
log.debug(
f"generate_multiple_async: Processing {len(batches)} batches sequentially"
)
batch_results = []
for batch in batches:
batch_results.append(
await embedding_function(batch, prefix=prefix, user=user)
)
# Flatten results
embeddings = []
for batch_embeddings in batch_results:
if isinstance(batch_embeddings, list):
embeddings.extend(batch_embeddings)
log.debug(
f"generate_multiple_async: Generated {len(embeddings)} embeddings from {len(batches)} parallel batches"
)
return embeddings
else:
return await embedding_function(query, prefix, user)
return async_embedding_function
else:
raise ValueError(f"Unknown embedding engine: {embedding_engine}")
async def generate_embeddings(
engine: str,
model: str,
text: Union[str, list[str]],
prefix: Union[str, None] = None,
**kwargs,
):
url = kwargs.get("url", "")
key = kwargs.get("key", "")
user = kwargs.get("user")
if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
if isinstance(text, list):
text = [f"{prefix}{text_element}" for text_element in text]
else:
text = f"{prefix}{text}"
if engine == "ollama":
embeddings = await agenerate_ollama_batch_embeddings(
**{
"model": model,
"texts": text if isinstance(text, list) else [text],
"url": url,
"key": key,
"prefix": prefix,
"user": user,
}
)
return embeddings[0] if isinstance(text, str) else embeddings
elif engine == "openai":
embeddings = await agenerate_openai_batch_embeddings(
model, text if isinstance(text, list) else [text], url, key, prefix, user
)
return embeddings[0] if isinstance(text, str) else embeddings
elif engine == "azure_openai":
azure_api_version = kwargs.get("azure_api_version", "")
embeddings = await agenerate_azure_openai_batch_embeddings(
model,
text if isinstance(text, list) else [text],
url,
key,
azure_api_version,
prefix,
user,
)
return embeddings[0] if isinstance(text, str) else embeddings
def get_reranking_function(reranking_engine, reranking_model, reranking_function):
if reranking_function is None:
return None
if reranking_engine == "external":
return lambda query, documents, user=None: reranking_function.predict(
[(query, doc.page_content) for doc in documents], user=user
)
else:
return lambda query, documents, user=None: reranking_function.predict(
[(query, doc.page_content) for doc in documents]
)
async def get_sources_from_items(
request,
items,
queries,
embedding_function,
k,
reranking_function,
k_reranker,
r,
hybrid_bm25_weight,
hybrid_search,
full_context=False,
user: Optional[UserModel] = None,
):
log.debug(
f"items: {items} {queries} {embedding_function} {reranking_function} {full_context}"
)
extracted_collections = []
query_results = []
for item in items:
query_result = None
collection_names = []
if item.get("type") == "text":
# Raw Text
# Used during temporary chat file uploads or web page & youtube attachements
if item.get("context") == "full":
if item.get("file"):
# if item has file data, use it
query_result = {
"documents": [
[item.get("file", {}).get("data", {}).get("content")]
],
"metadatas": [[item.get("file", {}).get("meta", {})]],
}
if query_result is None:
# Fallback
if item.get("collection_name"):
# If item has a collection name, use it
collection_names.append(item.get("collection_name"))
elif item.get("file"):
# If item has file data, use it
query_result = {
"documents": [
[item.get("file", {}).get("data", {}).get("content")]
],
"metadatas": [[item.get("file", {}).get("meta", {})]],
}
else:
# Fallback to item content
query_result = {
"documents": [[item.get("content")]],
"metadatas": [
[{"file_id": item.get("id"), "name": item.get("name")}]
],
}
elif item.get("type") == "note":
# Note Attached
note = Notes.get_note_by_id(item.get("id"))
if note and (
user.role == "admin"
or note.user_id == user.id
or AccessGrants.has_access(
user_id=user.id,
resource_type="note",
resource_id=note.id,
permission="read",
)
):
# User has access to the note
query_result = {
"documents": [[note.data.get("content", {}).get("md", "")]],
"metadatas": [[{"file_id": note.id, "name": note.title}]],
}
elif item.get("type") == "chat":
# Chat Attached
chat = Chats.get_chat_by_id(item.get("id"))
if chat and (user.role == "admin" or chat.user_id == user.id):
messages_map = chat.chat.get("history", {}).get("messages", {})
message_id = chat.chat.get("history", {}).get("currentId")
if messages_map and message_id:
# Reconstruct the message list in order
message_list = get_message_list(messages_map, message_id)
message_history = "\n".join(
[
f"#### {m.get('role', 'user').capitalize()}\n{m.get('content')}\n"
for m in message_list
]
)
# User has access to the chat
query_result = {
"documents": [[message_history]],
"metadatas": [[{"file_id": chat.id, "name": chat.title}]],
}
elif item.get("type") == "url":
content, docs = get_content_from_url(request, item.get("url"))
if docs:
query_result = {
"documents": [[content]],
"metadatas": [[{"url": item.get("url"), "name": item.get("url")}]],
}
elif item.get("type") == "file":
if (
item.get("context") == "full"
or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
):
if item.get("file", {}).get("data", {}).get("content", ""):
# Manual Full Mode Toggle
# Used from chat file modal, we can assume that the file content will be available from item.get("file").get("data", {}).get("content")
query_result = {
"documents": [
[item.get("file", {}).get("data", {}).get("content", "")]
],
"metadatas": [
[
{
"file_id": item.get("id"),
"name": item.get("name"),
**item.get("file")
.get("data", {})
.get("metadata", {}),
}
]
],
}
elif item.get("id"):
file_object = Files.get_file_by_id(item.get("id"))
if file_object:
query_result = {
"documents": [[file_object.data.get("content", "")]],
"metadatas": [
[
{
"file_id": item.get("id"),
"name": file_object.filename,
"source": file_object.filename,
}
]
],
}
else:
# Fallback to collection names
if item.get("legacy"):
collection_names.append(f"{item['id']}")
else:
collection_names.append(f"file-{item['id']}")
elif item.get("type") == "collection":
# Manual Full Mode Toggle for Collection
knowledge_base = Knowledges.get_knowledge_by_id(item.get("id"))
if knowledge_base and (
user.role == "admin"
or knowledge_base.user_id == user.id
or AccessGrants.has_access(
user_id=user.id,
resource_type="knowledge",
resource_id=knowledge_base.id,
permission="read",
)
):
if (
item.get("context") == "full"
or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
):
if knowledge_base and (
user.role == "admin"
or knowledge_base.user_id == user.id
or AccessGrants.has_access(
user_id=user.id,
resource_type="knowledge",
resource_id=knowledge_base.id,
permission="read",
)
):
files = Knowledges.get_files_by_id(knowledge_base.id)
documents = []
metadatas = []
for file in files:
documents.append(file.data.get("content", ""))
metadatas.append(
{
"file_id": file.id,
"name": file.filename,
"source": file.filename,
}
)
query_result = {
"documents": [documents],
"metadatas": [metadatas],
}
else:
# Fallback to collection names
if item.get("legacy"):
collection_names = item.get("collection_names", [])
else:
collection_names.append(item["id"])
elif item.get("docs"):
# BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
query_result = {
"documents": [[doc.get("content") for doc in item.get("docs")]],
"metadatas": [[doc.get("metadata") for doc in item.get("docs")]],
}
elif item.get("collection_name"):
# Direct Collection Name
collection_names.append(item["collection_name"])
elif item.get("collection_names"):
# Collection Names List
collection_names.extend(item["collection_names"])
# If query_result is None
# Fallback to collection names and vector search the collections
if query_result is None and collection_names:
collection_names = set(collection_names).difference(extracted_collections)
if not collection_names:
log.debug(f"skipping {item} as it has already been extracted")
continue
try:
if full_context:
query_result = get_all_items_from_collections(collection_names)
else:
query_result = None # Initialize to None
if hybrid_search:
try:
query_result = await query_collection_with_hybrid_search(
collection_names=collection_names,
queries=queries,
embedding_function=embedding_function,
k=k,
reranking_function=reranking_function,
k_reranker=k_reranker,
r=r,
hybrid_bm25_weight=hybrid_bm25_weight,
enable_enriched_texts=request.app.state.config.ENABLE_RAG_HYBRID_SEARCH_ENRICHED_TEXTS,
)
except Exception as e:
log.debug(
"Error when using hybrid search, using non hybrid search as fallback."
)
# fallback to non-hybrid search
if not hybrid_search and query_result is None:
query_result = await query_collection(
collection_names=collection_names,
queries=queries,
embedding_function=embedding_function,
k=k,
)
except Exception as e:
log.exception(e)
extracted_collections.extend(collection_names)
if query_result:
if "data" in item:
del item["data"]
query_results.append({**query_result, "file": item})
sources = []
for query_result in query_results:
try:
if "documents" in query_result:
if "metadatas" in query_result:
source = {
"source": query_result["file"],
"document": query_result["documents"][0],
"metadata": query_result["metadatas"][0],
}
if "distances" in query_result and query_result["distances"]:
source["distances"] = query_result["distances"][0]
sources.append(source)
except Exception as e:
log.exception(e)
return sources
def get_model_path(model: str, update_model: bool = False):
# Construct huggingface_hub kwargs with local_files_only to return the snapshot path
cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
local_files_only = not update_model
if OFFLINE_MODE:
local_files_only = True
snapshot_kwargs = {
"cache_dir": cache_dir,
"local_files_only": local_files_only,
}
log.debug(f"model: {model}")
log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
# Inspiration from upstream sentence_transformers
if (
os.path.exists(model)
or ("\\" in model or model.count("/") > 1)
and local_files_only
):
# If fully qualified path exists, return input, else set repo_id
return model
elif "/" not in model:
# Set valid repo_id for model short-name
model = "sentence-transformers" + "/" + model
snapshot_kwargs["repo_id"] = model
# Attempt to query the huggingface_hub library to determine the local path and/or to update
try:
model_repo_path = snapshot_download(**snapshot_kwargs)
log.debug(f"model_repo_path: {model_repo_path}")
return model_repo_path
except Exception as e:
log.exception(f"Cannot determine model snapshot path: {e}")
return model
import operator
from typing import Optional, Sequence
from langchain_core.callbacks import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
class RerankCompressor(BaseDocumentCompressor):
embedding_function: Any
top_n: int
reranking_function: Any
r_score: float
class Config:
extra = "forbid"
arbitrary_types_allowed = True
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""Compress retrieved documents given the query context.
Args:
documents: The retrieved documents.
query: The query context.
callbacks: Optional callbacks to run during compression.
Returns:
The compressed documents.
"""
return []
async def acompress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
reranking = self.reranking_function is not None
scores = None
if reranking:
scores = await asyncio.to_thread(self.reranking_function, query, documents)
else:
from sentence_transformers import util
query_embedding = await self.embedding_function(
query, RAG_EMBEDDING_QUERY_PREFIX
)
document_embedding = await self.embedding_function(
[doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
)
scores = util.cos_sim(query_embedding, document_embedding)[0]
if scores is not None:
docs_with_scores = list(
zip(
documents,
scores.tolist() if not isinstance(scores, list) else scores,
)
)
if self.r_score:
docs_with_scores = [
(d, s) for d, s in docs_with_scores if s >= self.r_score
]
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
final_results = []
for doc, doc_score in result[: self.top_n]:
metadata = doc.metadata
metadata["score"] = doc_score
doc = Document(
page_content=doc.page_content,
metadata=metadata,
)
final_results.append(doc)
return final_results
else:
log.warning(
"No valid scores found, check your reranking function. Returning original documents."
)
return documents
|