File size: 47,428 Bytes
d6703a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
import logging
import os
from typing import Awaitable, Optional, Union

import requests
import aiohttp
import asyncio
import hashlib
from concurrent.futures import ThreadPoolExecutor
import time
import re

from urllib.parse import quote
from huggingface_hub import snapshot_download
from langchain_classic.retrievers import (
    ContextualCompressionRetriever,
    EnsembleRetriever,
)
from langchain_community.retrievers import BM25Retriever
from langchain_core.documents import Document

from open_webui.config import VECTOR_DB
from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT


from open_webui.models.users import UserModel
from open_webui.models.files import Files
from open_webui.models.knowledge import Knowledges

from open_webui.models.chats import Chats
from open_webui.models.notes import Notes
from open_webui.models.access_grants import AccessGrants

from open_webui.retrieval.vector.main import GetResult
from open_webui.utils.headers import include_user_info_headers
from open_webui.utils.misc import get_message_list

from open_webui.retrieval.web.utils import get_web_loader
from open_webui.retrieval.loaders.youtube import YoutubeLoader


from open_webui.env import (
    AIOHTTP_CLIENT_TIMEOUT,
    OFFLINE_MODE,
    ENABLE_FORWARD_USER_INFO_HEADERS,
    AIOHTTP_CLIENT_SESSION_SSL,
)
from open_webui.config import (
    RAG_EMBEDDING_QUERY_PREFIX,
    RAG_EMBEDDING_CONTENT_PREFIX,
    RAG_EMBEDDING_PREFIX_FIELD_NAME,
)

log = logging.getLogger(__name__)


from typing import Any

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.retrievers import BaseRetriever


def is_youtube_url(url: str) -> bool:
    youtube_regex = r"^(https?://)?(www\.)?(youtube\.com|youtu\.be)/.+$"
    return re.match(youtube_regex, url) is not None


def get_loader(request, url: str):
    if is_youtube_url(url):
        return YoutubeLoader(
            url,
            language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
            proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
        )
    else:
        return get_web_loader(
            url,
            verify_ssl=request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,
            requests_per_second=request.app.state.config.WEB_LOADER_CONCURRENT_REQUESTS,
            trust_env=request.app.state.config.WEB_SEARCH_TRUST_ENV,
        )


def get_content_from_url(request, url: str) -> str:
    loader = get_loader(request, url)
    docs = loader.load()
    content = " ".join([doc.page_content for doc in docs])
    return content, docs


class VectorSearchRetriever(BaseRetriever):
    collection_name: Any
    embedding_function: Any
    top_k: int

    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> list[Document]:
        """Get documents relevant to a query.

        Args:
            query: String to find relevant documents for.
            run_manager: The callback handler to use.

        Returns:
            List of relevant documents.
        """
        return []

    async def _aget_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> list[Document]:
        embedding = await self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
        result = VECTOR_DB_CLIENT.search(
            collection_name=self.collection_name,
            vectors=[embedding],
            limit=self.top_k,
        )

        ids = result.ids[0]
        metadatas = result.metadatas[0]
        documents = result.documents[0]

        results = []
        for idx in range(len(ids)):
            results.append(
                Document(
                    metadata=metadatas[idx],
                    page_content=documents[idx],
                )
            )
        return results


def query_doc(
    collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
):
    try:
        log.debug(f"query_doc:doc {collection_name}")
        result = VECTOR_DB_CLIENT.search(
            collection_name=collection_name,
            vectors=[query_embedding],
            limit=k,
        )

        if result:
            log.info(f"query_doc:result {result.ids} {result.metadatas}")

        return result
    except Exception as e:
        log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
        raise e


def get_doc(collection_name: str, user: UserModel = None):
    try:
        log.debug(f"get_doc:doc {collection_name}")
        result = VECTOR_DB_CLIENT.get(collection_name=collection_name)

        if result:
            log.info(f"query_doc:result {result.ids} {result.metadatas}")

        return result
    except Exception as e:
        log.exception(f"Error getting doc {collection_name}: {e}")
        raise e


def get_enriched_texts(collection_result: GetResult) -> list[str]:
    enriched_texts = []
    for idx, text in enumerate(collection_result.documents[0]):
        metadata = collection_result.metadatas[0][idx]
        metadata_parts = [text]

        # Add filename (repeat twice for extra weight in BM25 scoring)
        if metadata.get("name"):
            filename = metadata["name"]
            filename_tokens = (
                filename.replace("_", " ").replace("-", " ").replace(".", " ")
            )
            metadata_parts.append(
                f"Filename: {filename} {filename_tokens} {filename_tokens}"
            )

        # Add title if available
        if metadata.get("title"):
            metadata_parts.append(f"Title: {metadata['title']}")

        # Add document section headings if available (from markdown splitter)
        if metadata.get("headings") and isinstance(metadata["headings"], list):
            headings = " > ".join(str(h) for h in metadata["headings"])
            metadata_parts.append(f"Section: {headings}")

        # Add source URL/path if available
        if metadata.get("source"):
            metadata_parts.append(f"Source: {metadata['source']}")

        # Add snippet for web search results
        if metadata.get("snippet"):
            metadata_parts.append(f"Snippet: {metadata['snippet']}")

        enriched_texts.append(" ".join(metadata_parts))

    return enriched_texts


async def query_doc_with_hybrid_search(
    collection_name: str,
    collection_result: GetResult,
    query: str,
    embedding_function,
    k: int,
    reranking_function,
    k_reranker: int,
    r: float,
    hybrid_bm25_weight: float,
    enable_enriched_texts: bool = False,
) -> dict:
    try:
        # First check if collection_result has the required attributes
        if (
            not collection_result
            or not hasattr(collection_result, "documents")
            or not hasattr(collection_result, "metadatas")
        ):
            log.warning(f"query_doc_with_hybrid_search:no_docs {collection_name}")
            return {"documents": [], "metadatas": [], "distances": []}

        # Now safely check the documents content after confirming attributes exist
        if (
            not collection_result.documents
            or len(collection_result.documents) == 0
            or not collection_result.documents[0]
        ):
            log.warning(f"query_doc_with_hybrid_search:no_docs {collection_name}")
            return {"documents": [], "metadatas": [], "distances": []}

        log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")

        bm25_texts = (
            get_enriched_texts(collection_result)
            if enable_enriched_texts
            else collection_result.documents[0]
        )

        bm25_retriever = BM25Retriever.from_texts(
            texts=bm25_texts,
            metadatas=collection_result.metadatas[0],
        )
        bm25_retriever.k = k

        vector_search_retriever = VectorSearchRetriever(
            collection_name=collection_name,
            embedding_function=embedding_function,
            top_k=k,
        )

        if hybrid_bm25_weight <= 0:
            ensemble_retriever = EnsembleRetriever(
                retrievers=[vector_search_retriever], weights=[1.0]
            )
        elif hybrid_bm25_weight >= 1:
            ensemble_retriever = EnsembleRetriever(
                retrievers=[bm25_retriever], weights=[1.0]
            )
        else:
            ensemble_retriever = EnsembleRetriever(
                retrievers=[bm25_retriever, vector_search_retriever],
                weights=[hybrid_bm25_weight, 1.0 - hybrid_bm25_weight],
            )

        compressor = RerankCompressor(
            embedding_function=embedding_function,
            top_n=k_reranker,
            reranking_function=reranking_function,
            r_score=r,
        )

        compression_retriever = ContextualCompressionRetriever(
            base_compressor=compressor, base_retriever=ensemble_retriever
        )

        result = await compression_retriever.ainvoke(query)

        distances = [d.metadata.get("score") for d in result]
        documents = [d.page_content for d in result]
        metadatas = [d.metadata for d in result]

        # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
        if k < k_reranker:
            sorted_items = sorted(
                zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
            )
            sorted_items = sorted_items[:k]

            if sorted_items:
                distances, documents, metadatas = map(list, zip(*sorted_items))
            else:
                distances, documents, metadatas = [], [], []

        result = {
            "distances": [distances],
            "documents": [documents],
            "metadatas": [metadatas],
        }

        log.info(
            "query_doc_with_hybrid_search:result "
            + f'{result["metadatas"]} {result["distances"]}'
        )
        return result
    except Exception as e:
        log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")
        raise e


def merge_get_results(get_results: list[dict]) -> dict:
    # Initialize lists to store combined data
    combined_documents = []
    combined_metadatas = []
    combined_ids = []

    for data in get_results:
        combined_documents.extend(data["documents"][0])
        combined_metadatas.extend(data["metadatas"][0])
        combined_ids.extend(data["ids"][0])

    # Create the output dictionary
    result = {
        "documents": [combined_documents],
        "metadatas": [combined_metadatas],
        "ids": [combined_ids],
    }

    return result


def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
    # Initialize lists to store combined data
    combined = dict()  # To store documents with unique document hashes

    for data in query_results:
        if (
            len(data.get("distances", [])) == 0
            or len(data.get("documents", [])) == 0
            or len(data.get("metadatas", [])) == 0
        ):
            continue

        distances = data["distances"][0]
        documents = data["documents"][0]
        metadatas = data["metadatas"][0]

        for distance, document, metadata in zip(distances, documents, metadatas):
            if isinstance(document, str):
                doc_hash = hashlib.sha256(
                    document.encode()
                ).hexdigest()  # Compute a hash for uniqueness

                if doc_hash not in combined.keys():
                    combined[doc_hash] = (distance, document, metadata)
                    continue  # if doc is new, no further comparison is needed

                # if doc is alredy in, but new distance is better, update
                if distance > combined[doc_hash][0]:
                    combined[doc_hash] = (distance, document, metadata)

    combined = list(combined.values())
    # Sort the list based on distances
    combined.sort(key=lambda x: x[0], reverse=True)

    # Slice to keep only the top k elements
    sorted_distances, sorted_documents, sorted_metadatas = (
        zip(*combined[:k]) if combined else ([], [], [])
    )

    # Create and return the output dictionary
    return {
        "distances": [list(sorted_distances)],
        "documents": [list(sorted_documents)],
        "metadatas": [list(sorted_metadatas)],
    }


def get_all_items_from_collections(collection_names: list[str]) -> dict:
    results = []

    for collection_name in collection_names:
        if collection_name:
            try:
                result = get_doc(collection_name=collection_name)
                if result is not None:
                    results.append(result.model_dump())
            except Exception as e:
                log.exception(f"Error when querying the collection: {e}")
        else:
            pass

    return merge_get_results(results)


async def query_collection(
    collection_names: list[str],
    queries: list[str],
    embedding_function,
    k: int,
) -> dict:
    results = []
    error = False

    def process_query_collection(collection_name, query_embedding):
        try:
            if collection_name:
                result = query_doc(
                    collection_name=collection_name,
                    k=k,
                    query_embedding=query_embedding,
                )
                if result is not None:
                    return result.model_dump(), None
            return None, None
        except Exception as e:
            log.exception(f"Error when querying the collection: {e}")
            return None, e

    # Generate all query embeddings (in one call)
    query_embeddings = await embedding_function(
        queries, prefix=RAG_EMBEDDING_QUERY_PREFIX
    )
    log.debug(
        f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections"
    )

    with ThreadPoolExecutor() as executor:
        future_results = []
        for query_embedding in query_embeddings:
            for collection_name in collection_names:
                result = executor.submit(
                    process_query_collection, collection_name, query_embedding
                )
                future_results.append(result)
        task_results = [future.result() for future in future_results]

    for result, err in task_results:
        if err is not None:
            error = True
        elif result is not None:
            results.append(result)

    if error and not results:
        log.warning("All collection queries failed. No results returned.")

    return merge_and_sort_query_results(results, k=k)


async def query_collection_with_hybrid_search(
    collection_names: list[str],
    queries: list[str],
    embedding_function,
    k: int,
    reranking_function,
    k_reranker: int,
    r: float,
    hybrid_bm25_weight: float,
    enable_enriched_texts: bool = False,
) -> dict:
    results = []
    error = False
    # Fetch collection data once per collection sequentially
    # Avoid fetching the same data multiple times later
    collection_results = {}
    for collection_name in collection_names:
        try:
            log.debug(
                f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"
            )
            collection_results[collection_name] = VECTOR_DB_CLIENT.get(
                collection_name=collection_name
            )
        except Exception as e:
            log.exception(f"Failed to fetch collection {collection_name}: {e}")
            collection_results[collection_name] = None

    log.info(
        f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
    )

    async def process_query(collection_name, query):
        try:
            result = await query_doc_with_hybrid_search(
                collection_name=collection_name,
                collection_result=collection_results[collection_name],
                query=query,
                embedding_function=embedding_function,
                k=k,
                reranking_function=reranking_function,
                k_reranker=k_reranker,
                r=r,
                hybrid_bm25_weight=hybrid_bm25_weight,
                enable_enriched_texts=enable_enriched_texts,
            )
            return result, None
        except Exception as e:
            log.exception(f"Error when querying the collection with hybrid_search: {e}")
            return None, e

    # Prepare tasks for all collections and queries
    # Avoid running any tasks for collections that failed to fetch data (have assigned None)
    tasks = [
        (collection_name, query)
        for collection_name in collection_names
        if collection_results[collection_name] is not None
        for query in queries
    ]

    # Run all queries in parallel using asyncio.gather
    task_results = await asyncio.gather(
        *[process_query(collection_name, query) for collection_name, query in tasks]
    )

    for result, err in task_results:
        if err is not None:
            error = True
        elif result is not None:
            results.append(result)

    if error and not results:
        raise Exception(
            "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
        )

    return merge_and_sort_query_results(results, k=k)


def generate_openai_batch_embeddings(
    model: str,
    texts: list[str],
    url: str = "https://api.openai.com/v1",
    key: str = "",
    prefix: str = None,
    user: UserModel = None,
) -> Optional[list[list[float]]]:
    try:
        log.debug(
            f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
        )
        json_data = {"input": texts, "model": model}
        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
            json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix

        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {key}",
        }
        if ENABLE_FORWARD_USER_INFO_HEADERS and user:
            headers = include_user_info_headers(headers, user)

        r = requests.post(
            f"{url}/embeddings",
            headers=headers,
            json=json_data,
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return [elem["embedding"] for elem in data["data"]]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        log.exception(f"Error generating openai batch embeddings: {e}")
        return None


async def agenerate_openai_batch_embeddings(
    model: str,
    texts: list[str],
    url: str = "https://api.openai.com/v1",
    key: str = "",
    prefix: str = None,
    user: UserModel = None,
) -> Optional[list[list[float]]]:
    try:
        log.debug(
            f"agenerate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
        )
        form_data = {"input": texts, "model": model}
        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
            form_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix

        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {key}",
        }
        if ENABLE_FORWARD_USER_INFO_HEADERS and user:
            headers = include_user_info_headers(headers, user)

        async with aiohttp.ClientSession(
            trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
        ) as session:
            async with session.post(
                f"{url}/embeddings",
                headers=headers,
                json=form_data,
                ssl=AIOHTTP_CLIENT_SESSION_SSL,
            ) as r:
                r.raise_for_status()
                data = await r.json()
                if "data" in data:
                    return [item["embedding"] for item in data["data"]]
                else:
                    raise Exception("Something went wrong :/")
    except Exception as e:
        log.exception(f"Error generating openai batch embeddings: {e}")
        return None


def generate_azure_openai_batch_embeddings(
    model: str,
    texts: list[str],
    url: str,
    key: str = "",
    version: str = "",
    prefix: str = None,
    user: UserModel = None,
) -> Optional[list[list[float]]]:
    try:
        log.debug(
            f"generate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"
        )
        json_data = {"input": texts}
        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
            json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix

        url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"

        for _ in range(5):
            headers = {
                "Content-Type": "application/json",
                "api-key": key,
            }
            if ENABLE_FORWARD_USER_INFO_HEADERS and user:
                headers = include_user_info_headers(headers, user)

            r = requests.post(
                url,
                headers=headers,
                json=json_data,
            )
            if r.status_code == 429:
                retry = float(r.headers.get("Retry-After", "1"))
                time.sleep(retry)
                continue
            r.raise_for_status()
            data = r.json()
            if "data" in data:
                return [elem["embedding"] for elem in data["data"]]
            else:
                raise Exception("Something went wrong :/")
        return None
    except Exception as e:
        log.exception(f"Error generating azure openai batch embeddings: {e}")
        return None


async def agenerate_azure_openai_batch_embeddings(
    model: str,
    texts: list[str],
    url: str,
    key: str = "",
    version: str = "",
    prefix: str = None,
    user: UserModel = None,
) -> Optional[list[list[float]]]:
    try:
        log.debug(
            f"agenerate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"
        )
        form_data = {"input": texts}
        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
            form_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix

        full_url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"

        headers = {
            "Content-Type": "application/json",
            "api-key": key,
        }
        if ENABLE_FORWARD_USER_INFO_HEADERS and user:
            headers = include_user_info_headers(headers, user)

        async with aiohttp.ClientSession(
            trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
        ) as session:
            async with session.post(
                full_url,
                headers=headers,
                json=form_data,
                ssl=AIOHTTP_CLIENT_SESSION_SSL,
            ) as r:
                r.raise_for_status()
                data = await r.json()
                if "data" in data:
                    return [item["embedding"] for item in data["data"]]
                else:
                    raise Exception("Something went wrong :/")
    except Exception as e:
        log.exception(f"Error generating azure openai batch embeddings: {e}")
        return None


def generate_ollama_batch_embeddings(
    model: str,
    texts: list[str],
    url: str,
    key: str = "",
    prefix: str = None,
    user: UserModel = None,
) -> Optional[list[list[float]]]:
    try:
        log.debug(
            f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
        )
        json_data = {"input": texts, "model": model}
        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
            json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix

        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {key}",
        }
        if ENABLE_FORWARD_USER_INFO_HEADERS and user:
            headers = include_user_info_headers(headers, user)

        r = requests.post(
            f"{url}/api/embed",
            headers=headers,
            json=json_data,
        )
        r.raise_for_status()
        data = r.json()

        if "embeddings" in data:
            return data["embeddings"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        log.exception(f"Error generating ollama batch embeddings: {e}")
        return None


async def agenerate_ollama_batch_embeddings(
    model: str,
    texts: list[str],
    url: str,
    key: str = "",
    prefix: str = None,
    user: UserModel = None,
) -> Optional[list[list[float]]]:
    try:
        log.debug(
            f"agenerate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
        )
        form_data = {"input": texts, "model": model}
        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
            form_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix

        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {key}",
        }
        if ENABLE_FORWARD_USER_INFO_HEADERS and user:
            headers = include_user_info_headers(headers, user)

        async with aiohttp.ClientSession(
            trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
        ) as session:
            async with session.post(
                f"{url}/api/embed",
                headers=headers,
                json=form_data,
                ssl=AIOHTTP_CLIENT_SESSION_SSL,
            ) as r:
                r.raise_for_status()
                data = await r.json()
                if "embeddings" in data:
                    return data["embeddings"]
                else:
                    raise Exception("Something went wrong :/")
    except Exception as e:
        log.exception(f"Error generating ollama batch embeddings: {e}")
        return None


def get_embedding_function(
    embedding_engine,
    embedding_model,
    embedding_function,
    url,
    key,
    embedding_batch_size,
    azure_api_version=None,
    enable_async=True,
) -> Awaitable:
    if embedding_engine == "":
        # Sentence transformers: CPU-bound sync operation
        async def async_embedding_function(query, prefix=None, user=None):
            return await asyncio.to_thread(
                (
                    lambda query, prefix=None: embedding_function.encode(
                        query,
                        batch_size=int(embedding_batch_size),
                        **({"prompt": prefix} if prefix else {}),
                    ).tolist()
                ),
                query,
                prefix,
            )

        return async_embedding_function
    elif embedding_engine in ["ollama", "openai", "azure_openai"]:
        embedding_function = lambda query, prefix=None, user=None: generate_embeddings(
            engine=embedding_engine,
            model=embedding_model,
            text=query,
            prefix=prefix,
            url=url,
            key=key,
            user=user,
            azure_api_version=azure_api_version,
        )

        async def async_embedding_function(query, prefix=None, user=None):
            if isinstance(query, list):
                # Create batches
                batches = [
                    query[i : i + embedding_batch_size]
                    for i in range(0, len(query), embedding_batch_size)
                ]

                if enable_async:
                    log.debug(
                        f"generate_multiple_async: Processing {len(batches)} batches in parallel"
                    )
                    # Execute all batches in parallel
                    tasks = [
                        embedding_function(batch, prefix=prefix, user=user)
                        for batch in batches
                    ]
                    batch_results = await asyncio.gather(*tasks)
                else:
                    log.debug(
                        f"generate_multiple_async: Processing {len(batches)} batches sequentially"
                    )
                    batch_results = []
                    for batch in batches:
                        batch_results.append(
                            await embedding_function(batch, prefix=prefix, user=user)
                        )

                # Flatten results
                embeddings = []
                for batch_embeddings in batch_results:
                    if isinstance(batch_embeddings, list):
                        embeddings.extend(batch_embeddings)

                log.debug(
                    f"generate_multiple_async: Generated {len(embeddings)} embeddings from {len(batches)} parallel batches"
                )
                return embeddings
            else:
                return await embedding_function(query, prefix, user)

        return async_embedding_function
    else:
        raise ValueError(f"Unknown embedding engine: {embedding_engine}")


async def generate_embeddings(
    engine: str,
    model: str,
    text: Union[str, list[str]],
    prefix: Union[str, None] = None,
    **kwargs,
):
    url = kwargs.get("url", "")
    key = kwargs.get("key", "")
    user = kwargs.get("user")

    if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
        if isinstance(text, list):
            text = [f"{prefix}{text_element}" for text_element in text]
        else:
            text = f"{prefix}{text}"

    if engine == "ollama":
        embeddings = await agenerate_ollama_batch_embeddings(
            **{
                "model": model,
                "texts": text if isinstance(text, list) else [text],
                "url": url,
                "key": key,
                "prefix": prefix,
                "user": user,
            }
        )
        return embeddings[0] if isinstance(text, str) else embeddings
    elif engine == "openai":
        embeddings = await agenerate_openai_batch_embeddings(
            model, text if isinstance(text, list) else [text], url, key, prefix, user
        )
        return embeddings[0] if isinstance(text, str) else embeddings
    elif engine == "azure_openai":
        azure_api_version = kwargs.get("azure_api_version", "")
        embeddings = await agenerate_azure_openai_batch_embeddings(
            model,
            text if isinstance(text, list) else [text],
            url,
            key,
            azure_api_version,
            prefix,
            user,
        )
        return embeddings[0] if isinstance(text, str) else embeddings


def get_reranking_function(reranking_engine, reranking_model, reranking_function):
    if reranking_function is None:
        return None
    if reranking_engine == "external":
        return lambda query, documents, user=None: reranking_function.predict(
            [(query, doc.page_content) for doc in documents], user=user
        )
    else:
        return lambda query, documents, user=None: reranking_function.predict(
            [(query, doc.page_content) for doc in documents]
        )


async def get_sources_from_items(
    request,
    items,
    queries,
    embedding_function,
    k,
    reranking_function,
    k_reranker,
    r,
    hybrid_bm25_weight,
    hybrid_search,
    full_context=False,
    user: Optional[UserModel] = None,
):
    log.debug(
        f"items: {items} {queries} {embedding_function} {reranking_function} {full_context}"
    )

    extracted_collections = []
    query_results = []

    for item in items:
        query_result = None
        collection_names = []

        if item.get("type") == "text":
            # Raw Text
            # Used during temporary chat file uploads or web page & youtube attachements

            if item.get("context") == "full":
                if item.get("file"):
                    # if item has file data, use it
                    query_result = {
                        "documents": [
                            [item.get("file", {}).get("data", {}).get("content")]
                        ],
                        "metadatas": [[item.get("file", {}).get("meta", {})]],
                    }

            if query_result is None:
                # Fallback
                if item.get("collection_name"):
                    # If item has a collection name, use it
                    collection_names.append(item.get("collection_name"))
                elif item.get("file"):
                    # If item has file data, use it
                    query_result = {
                        "documents": [
                            [item.get("file", {}).get("data", {}).get("content")]
                        ],
                        "metadatas": [[item.get("file", {}).get("meta", {})]],
                    }
                else:
                    # Fallback to item content
                    query_result = {
                        "documents": [[item.get("content")]],
                        "metadatas": [
                            [{"file_id": item.get("id"), "name": item.get("name")}]
                        ],
                    }

        elif item.get("type") == "note":
            # Note Attached
            note = Notes.get_note_by_id(item.get("id"))

            if note and (
                user.role == "admin"
                or note.user_id == user.id
                or AccessGrants.has_access(
                    user_id=user.id,
                    resource_type="note",
                    resource_id=note.id,
                    permission="read",
                )
            ):
                # User has access to the note
                query_result = {
                    "documents": [[note.data.get("content", {}).get("md", "")]],
                    "metadatas": [[{"file_id": note.id, "name": note.title}]],
                }

        elif item.get("type") == "chat":
            # Chat Attached
            chat = Chats.get_chat_by_id(item.get("id"))

            if chat and (user.role == "admin" or chat.user_id == user.id):
                messages_map = chat.chat.get("history", {}).get("messages", {})
                message_id = chat.chat.get("history", {}).get("currentId")

                if messages_map and message_id:
                    # Reconstruct the message list in order
                    message_list = get_message_list(messages_map, message_id)
                    message_history = "\n".join(
                        [
                            f"#### {m.get('role', 'user').capitalize()}\n{m.get('content')}\n"
                            for m in message_list
                        ]
                    )

                    # User has access to the chat
                    query_result = {
                        "documents": [[message_history]],
                        "metadatas": [[{"file_id": chat.id, "name": chat.title}]],
                    }

        elif item.get("type") == "url":
            content, docs = get_content_from_url(request, item.get("url"))
            if docs:
                query_result = {
                    "documents": [[content]],
                    "metadatas": [[{"url": item.get("url"), "name": item.get("url")}]],
                }
        elif item.get("type") == "file":
            if (
                item.get("context") == "full"
                or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
            ):
                if item.get("file", {}).get("data", {}).get("content", ""):
                    # Manual Full Mode Toggle
                    # Used from chat file modal, we can assume that the file content will be available from item.get("file").get("data", {}).get("content")
                    query_result = {
                        "documents": [
                            [item.get("file", {}).get("data", {}).get("content", "")]
                        ],
                        "metadatas": [
                            [
                                {
                                    "file_id": item.get("id"),
                                    "name": item.get("name"),
                                    **item.get("file")
                                    .get("data", {})
                                    .get("metadata", {}),
                                }
                            ]
                        ],
                    }
                elif item.get("id"):
                    file_object = Files.get_file_by_id(item.get("id"))
                    if file_object:
                        query_result = {
                            "documents": [[file_object.data.get("content", "")]],
                            "metadatas": [
                                [
                                    {
                                        "file_id": item.get("id"),
                                        "name": file_object.filename,
                                        "source": file_object.filename,
                                    }
                                ]
                            ],
                        }
            else:
                # Fallback to collection names
                if item.get("legacy"):
                    collection_names.append(f"{item['id']}")
                else:
                    collection_names.append(f"file-{item['id']}")

        elif item.get("type") == "collection":
            # Manual Full Mode Toggle for Collection
            knowledge_base = Knowledges.get_knowledge_by_id(item.get("id"))

            if knowledge_base and (
                user.role == "admin"
                or knowledge_base.user_id == user.id
                or AccessGrants.has_access(
                    user_id=user.id,
                    resource_type="knowledge",
                    resource_id=knowledge_base.id,
                    permission="read",
                )
            ):
                if (
                    item.get("context") == "full"
                    or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
                ):
                    if knowledge_base and (
                        user.role == "admin"
                        or knowledge_base.user_id == user.id
                        or AccessGrants.has_access(
                            user_id=user.id,
                            resource_type="knowledge",
                            resource_id=knowledge_base.id,
                            permission="read",
                        )
                    ):
                        files = Knowledges.get_files_by_id(knowledge_base.id)

                        documents = []
                        metadatas = []
                        for file in files:
                            documents.append(file.data.get("content", ""))
                            metadatas.append(
                                {
                                    "file_id": file.id,
                                    "name": file.filename,
                                    "source": file.filename,
                                }
                            )

                        query_result = {
                            "documents": [documents],
                            "metadatas": [metadatas],
                        }
                else:
                    # Fallback to collection names
                    if item.get("legacy"):
                        collection_names = item.get("collection_names", [])
                    else:
                        collection_names.append(item["id"])

        elif item.get("docs"):
            # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
            query_result = {
                "documents": [[doc.get("content") for doc in item.get("docs")]],
                "metadatas": [[doc.get("metadata") for doc in item.get("docs")]],
            }
        elif item.get("collection_name"):
            # Direct Collection Name
            collection_names.append(item["collection_name"])
        elif item.get("collection_names"):
            # Collection Names List
            collection_names.extend(item["collection_names"])

        # If query_result is None
        # Fallback to collection names and vector search the collections
        if query_result is None and collection_names:
            collection_names = set(collection_names).difference(extracted_collections)
            if not collection_names:
                log.debug(f"skipping {item} as it has already been extracted")
                continue

            try:
                if full_context:
                    query_result = get_all_items_from_collections(collection_names)
                else:
                    query_result = None  # Initialize to None
                    if hybrid_search:
                        try:
                            query_result = await query_collection_with_hybrid_search(
                                collection_names=collection_names,
                                queries=queries,
                                embedding_function=embedding_function,
                                k=k,
                                reranking_function=reranking_function,
                                k_reranker=k_reranker,
                                r=r,
                                hybrid_bm25_weight=hybrid_bm25_weight,
                                enable_enriched_texts=request.app.state.config.ENABLE_RAG_HYBRID_SEARCH_ENRICHED_TEXTS,
                            )
                        except Exception as e:
                            log.debug(
                                "Error when using hybrid search, using non hybrid search as fallback."
                            )

                    # fallback to non-hybrid search
                    if not hybrid_search and query_result is None:
                        query_result = await query_collection(
                            collection_names=collection_names,
                            queries=queries,
                            embedding_function=embedding_function,
                            k=k,
                        )
            except Exception as e:
                log.exception(e)

            extracted_collections.extend(collection_names)

        if query_result:
            if "data" in item:
                del item["data"]
            query_results.append({**query_result, "file": item})

    sources = []
    for query_result in query_results:
        try:
            if "documents" in query_result:
                if "metadatas" in query_result:
                    source = {
                        "source": query_result["file"],
                        "document": query_result["documents"][0],
                        "metadata": query_result["metadatas"][0],
                    }
                    if "distances" in query_result and query_result["distances"]:
                        source["distances"] = query_result["distances"][0]

                    sources.append(source)
        except Exception as e:
            log.exception(e)
    return sources


def get_model_path(model: str, update_model: bool = False):
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")

    local_files_only = not update_model

    if OFFLINE_MODE:
        local_files_only = True

    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

    log.debug(f"model: {model}")
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")

    # Inspiration from upstream sentence_transformers
    if (
        os.path.exists(model)
        or ("\\" in model or model.count("/") > 1)
        and local_files_only
    ):
        # If fully qualified path exists, return input, else set repo_id
        return model
    elif "/" not in model:
        # Set valid repo_id for model short-name
        model = "sentence-transformers" + "/" + model

    snapshot_kwargs["repo_id"] = model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"model_repo_path: {model_repo_path}")
        return model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine model snapshot path: {e}")
        return model


import operator
from typing import Optional, Sequence

from langchain_core.callbacks import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document


class RerankCompressor(BaseDocumentCompressor):
    embedding_function: Any
    top_n: int
    reranking_function: Any
    r_score: float

    class Config:
        extra = "forbid"
        arbitrary_types_allowed = True

    def compress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
        """Compress retrieved documents given the query context.

        Args:
            documents: The retrieved documents.
            query: The query context.
            callbacks: Optional callbacks to run during compression.

        Returns:
            The compressed documents.

        """
        return []

    async def acompress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
        reranking = self.reranking_function is not None

        scores = None
        if reranking:
            scores = await asyncio.to_thread(self.reranking_function, query, documents)
        else:
            from sentence_transformers import util

            query_embedding = await self.embedding_function(
                query, RAG_EMBEDDING_QUERY_PREFIX
            )
            document_embedding = await self.embedding_function(
                [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
            )
            scores = util.cos_sim(query_embedding, document_embedding)[0]

        if scores is not None:
            docs_with_scores = list(
                zip(
                    documents,
                    scores.tolist() if not isinstance(scores, list) else scores,
                )
            )
            if self.r_score:
                docs_with_scores = [
                    (d, s) for d, s in docs_with_scores if s >= self.r_score
                ]

            result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
            final_results = []
            for doc, doc_score in result[: self.top_n]:
                metadata = doc.metadata
                metadata["score"] = doc_score
                doc = Document(
                    page_content=doc.page_content,
                    metadata=metadata,
                )
                final_results.append(doc)
            return final_results
        else:
            log.warning(
                "No valid scores found, check your reranking function. Returning original documents."
            )
            return documents