Spaces:
Build error
Build error
File size: 14,087 Bytes
d6703a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
from typing import Optional
import logging
from fastapi import APIRouter, Depends, HTTPException, status, Request
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from open_webui.models.users import Users, UserModel
from open_webui.models.feedbacks import (
FeedbackIdResponse,
FeedbackModel,
FeedbackResponse,
FeedbackForm,
FeedbackUserResponse,
FeedbackListResponse,
LeaderboardFeedbackData,
ModelHistoryEntry,
ModelHistoryResponse,
Feedbacks,
)
from open_webui.constants import ERROR_MESSAGES
from open_webui.utils.auth import get_admin_user, get_verified_user
from open_webui.internal.db import get_session
from sqlalchemy.orm import Session
log = logging.getLogger(__name__)
router = APIRouter()
# Leaderboard Elo Rating Computation
#
# How it works:
# 1. Each model starts with a rating of 1000
# 2. When a user picks a winner between two models, ratings are adjusted:
# - Winner gains points, loser loses points
# - The amount depends on expected outcome (upset = bigger change)
# 3. The Elo formula: new_rating = old_rating + K * (actual - expected)
# - K=32 controls how much ratings can change per match
# - expected = probability of winning based on current ratings
#
# Query-based re-ranking (optional):
# When a user searches for a topic (e.g., "coding"), we want to show
# which models perform best FOR THAT TOPIC. We do this by:
# 1. Computing semantic similarity between the query and each feedback's tags
# 2. Using that similarity as a weight in the Elo calculation
# 3. Feedbacks about "coding" contribute more to the final ranking
# 4. Feedbacks about unrelated topics (e.g., "cooking") contribute less
# This gives topic-specific leaderboards without needing separate data.
import os
EMBEDDING_MODEL_NAME = os.environ.get(
"AUXILIARY_EMBEDDING_MODEL", "TaylorAI/bge-micro-v2"
)
_embedding_model = None
def _get_embedding_model():
global _embedding_model
if _embedding_model is None:
try:
from sentence_transformers import SentenceTransformer
_embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
except Exception as e:
log.error(f"Embedding model load failed: {e}")
return _embedding_model
def _calculate_elo(
feedbacks: list[LeaderboardFeedbackData], similarities: dict = None
) -> dict:
"""
Calculate Elo ratings for models based on user feedback.
Each feedback represents a comparison where a user rated one model
against its opponents (sibling_model_ids). Rating=1 means the model won,
rating=-1 means it lost.
The Elo system adjusts ratings based on:
- Current rating difference (upsets cause bigger swings)
- Optional similarity weights (for query-based filtering)
Returns: {model_id: {"rating": float, "won": int, "lost": int}}
"""
K_FACTOR = 32 # Standard Elo K-factor for rating volatility
model_stats = {}
def get_or_create_stats(model_id):
if model_id not in model_stats:
model_stats[model_id] = {"rating": 1000.0, "won": 0, "lost": 0}
return model_stats[model_id]
for feedback in feedbacks:
data = feedback.data or {}
winner_id = data.get("model_id")
rating_value = str(data.get("rating", ""))
if not winner_id or rating_value not in ("1", "-1"):
continue
won = rating_value == "1"
weight = similarities.get(feedback.id, 1.0) if similarities else 1.0
for opponent_id in data.get("sibling_model_ids") or []:
winner = get_or_create_stats(winner_id)
opponent = get_or_create_stats(opponent_id)
expected = 1 / (1 + 10 ** ((opponent["rating"] - winner["rating"]) / 400))
winner["rating"] += K_FACTOR * ((1 if won else 0) - expected) * weight
opponent["rating"] += (
K_FACTOR * ((0 if won else 1) - (1 - expected)) * weight
)
if won:
winner["won"] += 1
opponent["lost"] += 1
else:
winner["lost"] += 1
opponent["won"] += 1
return model_stats
def _get_top_tags(feedbacks: list[LeaderboardFeedbackData], limit: int = 5) -> dict:
"""
Count tag occurrences per model and return the most frequent ones.
Each feedback can have tags describing the conversation topic.
This aggregates those tags per model to show what topics each model
is commonly used for.
Returns: {model_id: [{"tag": str, "count": int}, ...]}
"""
from collections import defaultdict
tag_counts = defaultdict(lambda: defaultdict(int))
for feedback in feedbacks:
data = feedback.data or {}
model_id = data.get("model_id")
if model_id:
for tag in data.get("tags", []):
tag_counts[model_id][tag] += 1
return {
model_id: [
{"tag": tag, "count": count}
for tag, count in sorted(tags.items(), key=lambda x: -x[1])[:limit]
]
for model_id, tags in tag_counts.items()
}
def _compute_similarities(feedbacks: list[LeaderboardFeedbackData], query: str) -> dict:
"""
Compute how relevant each feedback is to a search query.
Uses embeddings to find semantic similarity between the query and
each feedback's tags. Higher similarity means the feedback is more
relevant to what the user searched for.
This is used to weight Elo calculations - feedbacks matching the
query have more influence on the final rankings.
Returns: {feedback_id: similarity_score (0-1)}
"""
import numpy as np
embedding_model = _get_embedding_model()
if not embedding_model:
return {}
all_tags = list(
{
tag
for feedback in feedbacks
if feedback.data
for tag in feedback.data.get("tags", [])
}
)
if not all_tags:
return {}
try:
tag_embeddings = embedding_model.encode(all_tags)
query_embedding = embedding_model.encode([query])[0]
except Exception as e:
log.error(f"Embedding error: {e}")
return {}
# Vectorized cosine similarity
tag_norms = np.linalg.norm(tag_embeddings, axis=1)
query_norm = np.linalg.norm(query_embedding)
similarities = np.dot(tag_embeddings, query_embedding) / (
tag_norms * query_norm + 1e-9
)
tag_similarity_map = dict(zip(all_tags, similarities.tolist()))
return {
feedback.id: max(
(
tag_similarity_map.get(tag, 0)
for tag in (feedback.data or {}).get("tags", [])
),
default=0,
)
for feedback in feedbacks
}
class LeaderboardEntry(BaseModel):
model_id: str
rating: int
won: int
lost: int
count: int
top_tags: list[dict]
class LeaderboardResponse(BaseModel):
entries: list[LeaderboardEntry]
@router.get("/leaderboard", response_model=LeaderboardResponse)
async def get_leaderboard(
query: Optional[str] = None,
user=Depends(get_admin_user),
db: Session = Depends(get_session),
):
"""Get model leaderboard with Elo ratings. Query filters by tag similarity."""
feedbacks = Feedbacks.get_feedbacks_for_leaderboard(db=db)
similarities = None
if query and query.strip():
similarities = await run_in_threadpool(
_compute_similarities, feedbacks, query.strip()
)
elo_stats = _calculate_elo(feedbacks, similarities)
tags_by_model = _get_top_tags(feedbacks)
entries = sorted(
[
LeaderboardEntry(
model_id=mid,
rating=round(s["rating"]),
won=s["won"],
lost=s["lost"],
count=s["won"] + s["lost"],
top_tags=tags_by_model.get(mid, []),
)
for mid, s in elo_stats.items()
],
key=lambda e: e.rating,
reverse=True,
)
return LeaderboardResponse(entries=entries)
@router.get("/leaderboard/{model_id}/history", response_model=ModelHistoryResponse)
async def get_model_history(
model_id: str,
days: int = 30,
user=Depends(get_admin_user),
db: Session = Depends(get_session),
):
"""Get daily win/loss history for a specific model."""
history = Feedbacks.get_model_evaluation_history(
model_id=model_id, days=days, db=db
)
return ModelHistoryResponse(model_id=model_id, history=history)
############################
# GetConfig
############################
@router.get("/config")
async def get_config(request: Request, user=Depends(get_admin_user)):
return {
"ENABLE_EVALUATION_ARENA_MODELS": request.app.state.config.ENABLE_EVALUATION_ARENA_MODELS,
"EVALUATION_ARENA_MODELS": request.app.state.config.EVALUATION_ARENA_MODELS,
}
############################
# UpdateConfig
############################
class UpdateConfigForm(BaseModel):
ENABLE_EVALUATION_ARENA_MODELS: Optional[bool] = None
EVALUATION_ARENA_MODELS: Optional[list[dict]] = None
@router.post("/config")
async def update_config(
request: Request,
form_data: UpdateConfigForm,
user=Depends(get_admin_user),
):
config = request.app.state.config
if form_data.ENABLE_EVALUATION_ARENA_MODELS is not None:
config.ENABLE_EVALUATION_ARENA_MODELS = form_data.ENABLE_EVALUATION_ARENA_MODELS
if form_data.EVALUATION_ARENA_MODELS is not None:
config.EVALUATION_ARENA_MODELS = form_data.EVALUATION_ARENA_MODELS
return {
"ENABLE_EVALUATION_ARENA_MODELS": config.ENABLE_EVALUATION_ARENA_MODELS,
"EVALUATION_ARENA_MODELS": config.EVALUATION_ARENA_MODELS,
}
@router.get("/feedbacks/all", response_model=list[FeedbackResponse])
async def get_all_feedbacks(
user=Depends(get_admin_user), db: Session = Depends(get_session)
):
feedbacks = Feedbacks.get_all_feedbacks(db=db)
return feedbacks
@router.get("/feedbacks/all/ids", response_model=list[FeedbackIdResponse])
async def get_all_feedback_ids(
user=Depends(get_admin_user), db: Session = Depends(get_session)
):
return Feedbacks.get_all_feedback_ids(db=db)
@router.delete("/feedbacks/all")
async def delete_all_feedbacks(
user=Depends(get_admin_user), db: Session = Depends(get_session)
):
success = Feedbacks.delete_all_feedbacks(db=db)
return success
@router.get("/feedbacks/all/export", response_model=list[FeedbackModel])
async def export_all_feedbacks(
user=Depends(get_admin_user), db: Session = Depends(get_session)
):
feedbacks = Feedbacks.get_all_feedbacks(db=db)
return feedbacks
@router.get("/feedbacks/user", response_model=list[FeedbackUserResponse])
async def get_feedbacks(
user=Depends(get_verified_user), db: Session = Depends(get_session)
):
feedbacks = Feedbacks.get_feedbacks_by_user_id(user.id, db=db)
return feedbacks
@router.delete("/feedbacks", response_model=bool)
async def delete_feedbacks(
user=Depends(get_verified_user), db: Session = Depends(get_session)
):
success = Feedbacks.delete_feedbacks_by_user_id(user.id, db=db)
return success
PAGE_ITEM_COUNT = 30
@router.get("/feedbacks/list", response_model=FeedbackListResponse)
async def get_feedbacks(
order_by: Optional[str] = None,
direction: Optional[str] = None,
page: Optional[int] = 1,
user=Depends(get_admin_user),
db: Session = Depends(get_session),
):
limit = PAGE_ITEM_COUNT
page = max(1, page)
skip = (page - 1) * limit
filter = {}
if order_by:
filter["order_by"] = order_by
if direction:
filter["direction"] = direction
result = Feedbacks.get_feedback_items(filter=filter, skip=skip, limit=limit, db=db)
return result
@router.post("/feedback", response_model=FeedbackModel)
async def create_feedback(
request: Request,
form_data: FeedbackForm,
user=Depends(get_verified_user),
db: Session = Depends(get_session),
):
feedback = Feedbacks.insert_new_feedback(
user_id=user.id, form_data=form_data, db=db
)
if not feedback:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(),
)
return feedback
@router.get("/feedback/{id}", response_model=FeedbackModel)
async def get_feedback_by_id(
id: str, user=Depends(get_verified_user), db: Session = Depends(get_session)
):
if user.role == "admin":
feedback = Feedbacks.get_feedback_by_id(id=id, db=db)
else:
feedback = Feedbacks.get_feedback_by_id_and_user_id(
id=id, user_id=user.id, db=db
)
if not feedback:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND, detail=ERROR_MESSAGES.NOT_FOUND
)
return feedback
@router.post("/feedback/{id}", response_model=FeedbackModel)
async def update_feedback_by_id(
id: str,
form_data: FeedbackForm,
user=Depends(get_verified_user),
db: Session = Depends(get_session),
):
if user.role == "admin":
feedback = Feedbacks.update_feedback_by_id(id=id, form_data=form_data, db=db)
else:
feedback = Feedbacks.update_feedback_by_id_and_user_id(
id=id, user_id=user.id, form_data=form_data, db=db
)
if not feedback:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND, detail=ERROR_MESSAGES.NOT_FOUND
)
return feedback
@router.delete("/feedback/{id}")
async def delete_feedback_by_id(
id: str, user=Depends(get_verified_user), db: Session = Depends(get_session)
):
if user.role == "admin":
success = Feedbacks.delete_feedback_by_id(id=id, db=db)
else:
success = Feedbacks.delete_feedback_by_id_and_user_id(
id=id, user_id=user.id, db=db
)
if not success:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND, detail=ERROR_MESSAGES.NOT_FOUND
)
return success
|