Spaces:
Build error
Build error
File size: 28,201 Bytes
d6703a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
import hashlib
import re
import threading
import time
import uuid
import logging
from datetime import timedelta
from pathlib import Path
from typing import Callable, Optional, Sequence, Union
import json
import aiohttp
import mimeparse
import collections.abc
from open_webui.env import CHAT_STREAM_RESPONSE_CHUNK_MAX_BUFFER_SIZE
log = logging.getLogger(__name__)
def deep_update(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = deep_update(d.get(k, {}), v)
else:
d[k] = v
return d
def get_allow_block_lists(filter_list):
allow_list = []
block_list = []
if filter_list:
for d in filter_list:
if d.startswith("!"):
# Domains starting with "!" → blocked
block_list.append(d[1:].strip())
else:
# Domains starting without "!" → allowed
allow_list.append(d.strip())
return allow_list, block_list
def is_string_allowed(
string: Union[str, Sequence[str]], filter_list: Optional[list[str]] = None
) -> bool:
"""
Checks if a string is allowed based on the provided filter list.
:param string: The string or sequence of strings to check (e.g., domain or hostname).
:param filter_list: List of allowed/blocked strings. Strings starting with "!" are blocked.
:return: True if the string or sequence of strings is allowed, False otherwise.
"""
if not filter_list:
return True
allow_list, block_list = get_allow_block_lists(filter_list)
strings = [string] if isinstance(string, str) else list(string)
# If allow list is non-empty, require domain to match one of them
if allow_list:
if not any(s.endswith(allowed) for s in strings for allowed in allow_list):
return False
# Block list always removes matches
if any(s.endswith(blocked) for s in strings for blocked in block_list):
return False
return True
def get_message_list(messages_map, message_id):
"""
Reconstructs a list of messages in order up to the specified message_id.
:param message_id: ID of the message to reconstruct the chain
:param messages: Message history dict containing all messages
:return: List of ordered messages starting from the root to the given message
"""
# Handle case where messages is None
if not messages_map:
return [] # Return empty list instead of None to prevent iteration errors
# Find the message by its id
current_message = messages_map.get(message_id)
if not current_message:
return [] # Return empty list instead of None to prevent iteration errors
# Reconstruct the chain by following the parentId links
message_list = []
while current_message:
message_list.insert(
0, current_message
) # Insert the message at the beginning of the list
parent_id = current_message.get("parentId") # Use .get() for safety
current_message = messages_map.get(parent_id) if parent_id else None
return message_list
def get_messages_content(messages: list[dict]) -> str:
return "\n".join(
[
f"{message['role'].upper()}: {get_content_from_message(message)}"
for message in messages
]
)
def get_last_user_message_item(messages: list[dict]) -> Optional[dict]:
for message in reversed(messages):
if message["role"] == "user":
return message
return None
def get_content_from_message(message: dict) -> Optional[str]:
if isinstance(message.get("content"), list):
for item in message["content"]:
if item["type"] == "text":
return item["text"]
else:
return message.get("content")
return None
def convert_output_to_messages(output: list, raw: bool = False) -> list[dict]:
"""
Convert OR-aligned output items to OpenAI Chat Completion-format messages.
This reconstructs the full conversation from the stored Responses API-native
output items, including assistant messages with tool_calls arrays and tool
role messages.
Args:
output: List of OR-aligned output items (Responses API format).
raw: If True, include reasoning blocks (with original tags) and code
interpreter blocks for LLM re-processing follow-ups.
"""
if not output or not isinstance(output, list):
return []
messages = []
pending_tool_calls = []
pending_content = []
def flush_pending():
nonlocal pending_content, pending_tool_calls
if pending_content or pending_tool_calls:
messages.append(
{
"role": "assistant",
"content": "\n".join(pending_content) if pending_content else "",
**(
{"tool_calls": pending_tool_calls} if pending_tool_calls else {}
),
}
)
pending_content = []
pending_tool_calls = []
for item in output:
item_type = item.get("type", "")
if item_type == "message":
# Extract text from output_text content parts
content_parts = item.get("content", [])
text = ""
for part in content_parts:
if part.get("type") == "output_text":
text += part.get("text", "")
if text:
pending_content.append(text)
elif item_type == "function_call":
# Collect tool calls to batch into assistant message
arguments = item.get("arguments", "{}")
# Ensure arguments is always a JSON string
if not isinstance(arguments, str):
arguments = json.dumps(arguments)
pending_tool_calls.append(
{
"id": item.get("call_id", ""),
"type": "function",
"function": {
"name": item.get("name", ""),
"arguments": arguments,
},
}
)
elif item_type == "function_call_output":
# Flush any pending content/tool_calls before adding tool result
flush_pending()
# Extract text from output content parts
output_parts = item.get("output", [])
content = ""
for part in output_parts:
if part.get("type") == "input_text":
content += part.get("text", "")
messages.append(
{
"role": "tool",
"tool_call_id": item.get("call_id", ""),
"content": content,
}
)
elif item_type == "reasoning":
if raw:
# Include reasoning with original tags for LLM re-processing
reasoning_text = ""
source_list = item.get("summary", []) or item.get("content", [])
for part in source_list:
if part.get("type") == "output_text":
reasoning_text += part.get("text", "")
elif "text" in part:
reasoning_text += part.get("text", "")
if reasoning_text:
start_tag = item.get("start_tag", "<think>")
end_tag = item.get("end_tag", "</think>")
pending_content.append(f"{start_tag}{reasoning_text}{end_tag}")
# else: skip reasoning blocks for normal LLM messages
elif item_type == "open_webui:code_interpreter":
if raw:
# Include code interpreter content for LLM re-processing
code = item.get("code", "")
code_output = item.get("output", "")
if code:
lang = item.get("lang", "python")
pending_content.append(f"```{lang}\n{code}\n```")
if code_output:
if isinstance(code_output, dict):
stdout = code_output.get("stdout", "")
result = code_output.get("result", "")
output_text = stdout or result
else:
output_text = str(code_output)
if output_text:
pending_content.append(f"Output:\n{output_text}")
# else: skip extension types
elif item_type.startswith("open_webui:"):
# Skip other extension types
pass
# Flush remaining content/tool_calls
flush_pending()
return messages
def get_last_user_message(messages: list[dict]) -> Optional[str]:
message = get_last_user_message_item(messages)
if message is None:
return None
return get_content_from_message(message)
def get_last_assistant_message_item(messages: list[dict]) -> Optional[dict]:
for message in reversed(messages):
if message["role"] == "assistant":
return message
return None
def get_last_assistant_message(messages: list[dict]) -> Optional[str]:
for message in reversed(messages):
if message["role"] == "assistant":
return get_content_from_message(message)
return None
def get_system_message(messages: list[dict]) -> Optional[dict]:
for message in messages:
if message["role"] == "system":
return message
return None
def remove_system_message(messages: list[dict]) -> list[dict]:
return [message for message in messages if message["role"] != "system"]
def pop_system_message(messages: list[dict]) -> tuple[Optional[dict], list[dict]]:
return get_system_message(messages), remove_system_message(messages)
def update_message_content(message: dict, content: str, append: bool = True) -> dict:
if isinstance(message["content"], list):
for item in message["content"]:
if item["type"] == "text":
if append:
item["text"] = f"{item['text']}\n{content}"
else:
item["text"] = f"{content}\n{item['text']}"
else:
if append:
message["content"] = f"{message['content']}\n{content}"
else:
message["content"] = f"{content}\n{message['content']}"
return message
def replace_system_message_content(content: str, messages: list[dict]) -> dict:
for message in messages:
if message["role"] == "system":
message["content"] = content
break
return messages
def add_or_update_system_message(
content: str, messages: list[dict], append: bool = False
):
"""
Adds a new system message at the beginning of the messages list
or updates the existing system message at the beginning.
:param msg: The message to be added or appended.
:param messages: The list of message dictionaries.
:return: The updated list of message dictionaries.
"""
if messages and messages[0].get("role") == "system":
messages[0] = update_message_content(messages[0], content, append)
else:
# Insert at the beginning
messages.insert(0, {"role": "system", "content": content})
return messages
def add_or_update_user_message(content: str, messages: list[dict], append: bool = True):
"""
Adds a new user message at the end of the messages list
or updates the existing user message at the end.
:param msg: The message to be added or appended.
:param messages: The list of message dictionaries.
:return: The updated list of message dictionaries.
"""
if messages and messages[-1].get("role") == "user":
messages[-1] = update_message_content(messages[-1], content, append)
else:
# Insert at the end
messages.append({"role": "user", "content": content})
return messages
def prepend_to_first_user_message_content(
content: str, messages: list[dict]
) -> list[dict]:
for message in messages:
if message["role"] == "user":
message = update_message_content(message, content, append=False)
break
return messages
def append_or_update_assistant_message(content: str, messages: list[dict]):
"""
Adds a new assistant message at the end of the messages list
or updates the existing assistant message at the end.
:param msg: The message to be added or appended.
:param messages: The list of message dictionaries.
:return: The updated list of message dictionaries.
"""
if messages and messages[-1].get("role") == "assistant":
messages[-1]["content"] = f"{messages[-1]['content']}\n{content}"
else:
# Insert at the end
messages.append({"role": "assistant", "content": content})
return messages
def openai_chat_message_template(model: str):
return {
"id": f"{model}-{str(uuid.uuid4())}",
"created": int(time.time()),
"model": model,
"choices": [{"index": 0, "logprobs": None, "finish_reason": None}],
}
def openai_chat_chunk_message_template(
model: str,
content: Optional[str] = None,
reasoning_content: Optional[str] = None,
tool_calls: Optional[list[dict]] = None,
usage: Optional[dict] = None,
) -> dict:
template = openai_chat_message_template(model)
template["object"] = "chat.completion.chunk"
template["choices"][0]["index"] = 0
template["choices"][0]["delta"] = {}
if content:
template["choices"][0]["delta"]["content"] = content
if reasoning_content:
template["choices"][0]["delta"]["reasoning_content"] = reasoning_content
if tool_calls:
template["choices"][0]["delta"]["tool_calls"] = tool_calls
if not content and not reasoning_content and not tool_calls:
template["choices"][0]["finish_reason"] = "stop"
if usage:
template["usage"] = usage
return template
def openai_chat_completion_message_template(
model: str,
message: Optional[str] = None,
reasoning_content: Optional[str] = None,
tool_calls: Optional[list[dict]] = None,
usage: Optional[dict] = None,
) -> dict:
template = openai_chat_message_template(model)
template["object"] = "chat.completion"
if message is not None:
template["choices"][0]["message"] = {
"role": "assistant",
"content": message,
**({"reasoning_content": reasoning_content} if reasoning_content else {}),
**({"tool_calls": tool_calls} if tool_calls else {}),
}
template["choices"][0]["finish_reason"] = "stop"
if usage:
template["usage"] = usage
return template
def get_gravatar_url(email):
# Trim leading and trailing whitespace from
# an email address and force all characters
# to lower case
address = str(email).strip().lower()
# Create a SHA256 hash of the final string
hash_object = hashlib.sha256(address.encode())
hash_hex = hash_object.hexdigest()
# Grab the actual image URL
return f"https://www.gravatar.com/avatar/{hash_hex}?d=mp"
def calculate_sha256(file_path, chunk_size):
# Compute SHA-256 hash of a file efficiently in chunks
sha256 = hashlib.sha256()
with open(file_path, "rb") as f:
while chunk := f.read(chunk_size):
sha256.update(chunk)
return sha256.hexdigest()
def calculate_sha256_string(string):
# Create a new SHA-256 hash object
sha256_hash = hashlib.sha256()
# Update the hash object with the bytes of the input string
sha256_hash.update(string.encode("utf-8"))
# Get the hexadecimal representation of the hash
hashed_string = sha256_hash.hexdigest()
return hashed_string
def validate_email_format(email: str) -> bool:
if email.endswith("@localhost"):
return True
return bool(re.match(r"[^@]+@[^@]+\.[^@]+", email))
def sanitize_filename(file_name):
# Convert to lowercase
lower_case_file_name = file_name.lower()
# Remove special characters using regular expression
sanitized_file_name = re.sub(r"[^\w\s]", "", lower_case_file_name)
# Replace spaces with dashes
final_file_name = re.sub(r"\s+", "-", sanitized_file_name)
return final_file_name
def sanitize_text_for_db(text: str) -> str:
"""Remove null bytes and invalid UTF-8 surrogates from text for PostgreSQL storage."""
if not isinstance(text, str):
return text
# Remove null bytes
text = text.replace("\x00", "").replace("\u0000", "")
# Remove invalid UTF-8 surrogate characters that can cause encoding errors
# This handles cases where binary data or encoding issues introduced surrogates
try:
text = text.encode("utf-8", errors="surrogatepass").decode(
"utf-8", errors="ignore"
)
except (UnicodeEncodeError, UnicodeDecodeError):
pass
return text
def sanitize_data_for_db(obj):
"""Recursively sanitize all strings in a data structure for database storage."""
if isinstance(obj, str):
return sanitize_text_for_db(obj)
elif isinstance(obj, dict):
return {k: sanitize_data_for_db(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [sanitize_data_for_db(v) for v in obj]
return obj
def extract_folders_after_data_docs(path):
# Convert the path to a Path object if it's not already
path = Path(path)
# Extract parts of the path
parts = path.parts
# Find the index of '/data/docs' in the path
try:
index_data_docs = parts.index("data") + 1
index_docs = parts.index("docs", index_data_docs) + 1
except ValueError:
return []
# Exclude the filename and accumulate folder names
tags = []
folders = parts[index_docs:-1]
for idx, _ in enumerate(folders):
tags.append("/".join(folders[: idx + 1]))
return tags
def parse_duration(duration: str) -> Optional[timedelta]:
if duration == "-1" or duration == "0":
return None
# Regular expression to find number and unit pairs
pattern = r"(-?\d+(\.\d+)?)(ms|s|m|h|d|w)"
matches = re.findall(pattern, duration)
if not matches:
raise ValueError("Invalid duration string")
total_duration = timedelta()
for number, _, unit in matches:
number = float(number)
if unit == "ms":
total_duration += timedelta(milliseconds=number)
elif unit == "s":
total_duration += timedelta(seconds=number)
elif unit == "m":
total_duration += timedelta(minutes=number)
elif unit == "h":
total_duration += timedelta(hours=number)
elif unit == "d":
total_duration += timedelta(days=number)
elif unit == "w":
total_duration += timedelta(weeks=number)
return total_duration
def parse_ollama_modelfile(model_text):
parameters_meta = {
"mirostat": int,
"mirostat_eta": float,
"mirostat_tau": float,
"num_ctx": int,
"repeat_last_n": int,
"repeat_penalty": float,
"temperature": float,
"seed": int,
"tfs_z": float,
"num_predict": int,
"top_k": int,
"top_p": float,
"num_keep": int,
"presence_penalty": float,
"frequency_penalty": float,
"num_batch": int,
"num_gpu": int,
"use_mmap": bool,
"use_mlock": bool,
"num_thread": int,
}
data = {"base_model_id": None, "params": {}}
# Parse base model
base_model_match = re.search(
r"^FROM\s+(\w+)", model_text, re.MULTILINE | re.IGNORECASE
)
if base_model_match:
data["base_model_id"] = base_model_match.group(1)
# Parse template
template_match = re.search(
r'TEMPLATE\s+"""(.+?)"""', model_text, re.DOTALL | re.IGNORECASE
)
if template_match:
data["params"] = {"template": template_match.group(1).strip()}
# Parse stops
stops = re.findall(r'PARAMETER stop "(.*?)"', model_text, re.IGNORECASE)
if stops:
data["params"]["stop"] = stops
# Parse other parameters from the provided list
for param, param_type in parameters_meta.items():
param_match = re.search(rf"PARAMETER {param} (.+)", model_text, re.IGNORECASE)
if param_match:
value = param_match.group(1)
try:
if param_type is int:
value = int(value)
elif param_type is float:
value = float(value)
elif param_type is bool:
value = value.lower() == "true"
except Exception as e:
log.exception(f"Failed to parse parameter {param}: {e}")
continue
data["params"][param] = value
# Parse adapter
adapter_match = re.search(r"ADAPTER (.+)", model_text, re.IGNORECASE)
if adapter_match:
data["params"]["adapter"] = adapter_match.group(1)
# Parse system description
system_desc_match = re.search(
r'SYSTEM\s+"""(.+?)"""', model_text, re.DOTALL | re.IGNORECASE
)
system_desc_match_single = re.search(
r"SYSTEM\s+([^\n]+)", model_text, re.IGNORECASE
)
if system_desc_match:
data["params"]["system"] = system_desc_match.group(1).strip()
elif system_desc_match_single:
data["params"]["system"] = system_desc_match_single.group(1).strip()
# Parse messages
messages = []
message_matches = re.findall(r"MESSAGE (\w+) (.+)", model_text, re.IGNORECASE)
for role, content in message_matches:
messages.append({"role": role, "content": content})
if messages:
data["params"]["messages"] = messages
return data
def convert_logit_bias_input_to_json(user_input) -> Optional[str]:
if user_input:
logit_bias_pairs = user_input.split(",")
logit_bias_json = {}
for pair in logit_bias_pairs:
token, bias = pair.split(":")
token = str(token.strip())
bias = int(bias.strip())
bias = 100 if bias > 100 else -100 if bias < -100 else bias
logit_bias_json[token] = bias
return json.dumps(logit_bias_json)
return None
def freeze(value):
"""
Freeze a value to make it hashable.
"""
if isinstance(value, dict):
return frozenset((k, freeze(v)) for k, v in value.items())
elif isinstance(value, list):
return tuple(freeze(v) for v in value)
return value
def throttle(interval: float = 10.0):
"""
Decorator to prevent a function from being called more than once within a specified duration.
If the function is called again within the duration, it returns None. To avoid returning
different types, the return type of the function should be Optional[T].
:param interval: Duration in seconds to wait before allowing the function to be called again.
"""
def decorator(func):
last_calls = {}
lock = threading.Lock()
def wrapper(*args, **kwargs):
if interval is None:
return func(*args, **kwargs)
key = (args, freeze(kwargs))
now = time.time()
if now - last_calls.get(key, 0) < interval:
return None
with lock:
if now - last_calls.get(key, 0) < interval:
return None
last_calls[key] = now
return func(*args, **kwargs)
return wrapper
return decorator
def strict_match_mime_type(supported: list[str] | str, header: str) -> Optional[str]:
"""
Strictly match the mime type with the supported mime types.
:param supported: The supported mime types.
:param header: The header to match.
:return: The matched mime type or None if no match is found.
"""
try:
if isinstance(supported, str):
supported = supported.split(",")
supported = [s for s in supported if s.strip() and "/" in s]
if len(supported) == 0:
# Default to common types if none are specified
supported = ["audio/*", "video/webm"]
match = mimeparse.best_match(supported, header)
if not match:
return None
_, _, match_params = mimeparse.parse_mime_type(match)
_, _, header_params = mimeparse.parse_mime_type(header)
for k, v in match_params.items():
if header_params.get(k) != v:
return None
return match
except Exception as e:
log.exception(f"Failed to match mime type {header}: {e}")
return None
def extract_urls(text: str) -> list[str]:
# Regex pattern to match URLs
url_pattern = re.compile(
r"(https?://[^\s]+)", re.IGNORECASE
) # Matches http and https URLs
return url_pattern.findall(text)
async def cleanup_response(
response: Optional[aiohttp.ClientResponse],
session: Optional[aiohttp.ClientSession],
):
if response:
response.close()
if session:
await session.close()
async def stream_wrapper(response, session, content_handler=None):
"""
Wrap a stream to ensure cleanup happens even if streaming is interrupted.
This is more reliable than BackgroundTask which may not run if client disconnects.
"""
try:
stream = content_handler(response.content) if content_handler else response.content
async for chunk in stream:
yield chunk
finally:
await cleanup_response(response, session)
def stream_chunks_handler(stream: aiohttp.StreamReader):
"""
Handle stream response chunks, supporting large data chunks that exceed the original 16kb limit.
When a single line exceeds max_buffer_size, returns an empty JSON string {} and skips subsequent data
until encountering normally sized data.
:param stream: The stream reader to handle.
:return: An async generator that yields the stream data.
"""
max_buffer_size = CHAT_STREAM_RESPONSE_CHUNK_MAX_BUFFER_SIZE
if max_buffer_size is None or max_buffer_size <= 0:
return stream
async def yield_safe_stream_chunks():
buffer = b""
skip_mode = False
async for data, _ in stream.iter_chunks():
if not data:
continue
# In skip_mode, if buffer already exceeds the limit, clear it (it's part of an oversized line)
if skip_mode and len(buffer) > max_buffer_size:
buffer = b""
lines = (buffer + data).split(b"\n")
# Process complete lines (except the last possibly incomplete fragment)
for i in range(len(lines) - 1):
line = lines[i]
if skip_mode:
# Skip mode: check if current line is small enough to exit skip mode
if len(line) <= max_buffer_size:
skip_mode = False
yield line
else:
yield b"data: {}"
yield b"\n"
else:
# Normal mode: check if line exceeds limit
if len(line) > max_buffer_size:
skip_mode = True
yield b"data: {}"
yield b"\n"
log.info(f"Skip mode triggered, line size: {len(line)}")
else:
yield line
yield b"\n"
# Save the last incomplete fragment
buffer = lines[-1]
# Check if buffer exceeds limit
if not skip_mode and len(buffer) > max_buffer_size:
skip_mode = True
log.info(f"Skip mode triggered, buffer size: {len(buffer)}")
# Clear oversized buffer to prevent unlimited growth
buffer = b""
# Process remaining buffer data
if buffer and not skip_mode:
yield buffer
yield b"\n"
return yield_safe_stream_chunks()
|