Spaces:
Build error
Build error
| import time | |
| import logging | |
| import sys | |
| import os | |
| import base64 | |
| import textwrap | |
| import asyncio | |
| from aiocache import cached | |
| from typing import Any, Optional | |
| import random | |
| import json | |
| import html | |
| import inspect | |
| import re | |
| import ast | |
| from uuid import uuid4 | |
| from concurrent.futures import ThreadPoolExecutor | |
| from fastapi import Request, HTTPException | |
| from fastapi.responses import HTMLResponse | |
| from starlette.responses import Response, StreamingResponse, JSONResponse | |
| from open_webui.utils.misc import is_string_allowed | |
| from open_webui.models.oauth_sessions import OAuthSessions | |
| from open_webui.models.chats import Chats | |
| from open_webui.models.folders import Folders | |
| from open_webui.models.users import Users | |
| from open_webui.socket.main import ( | |
| get_event_call, | |
| get_event_emitter, | |
| ) | |
| from open_webui.routers.tasks import ( | |
| generate_queries, | |
| generate_title, | |
| generate_follow_ups, | |
| generate_image_prompt, | |
| generate_chat_tags, | |
| ) | |
| from open_webui.routers.retrieval import ( | |
| process_web_search, | |
| SearchForm, | |
| ) | |
| from open_webui.utils.tools import get_builtin_tools | |
| from open_webui.routers.images import ( | |
| image_generations, | |
| CreateImageForm, | |
| image_edits, | |
| EditImageForm, | |
| ) | |
| from open_webui.routers.pipelines import ( | |
| process_pipeline_inlet_filter, | |
| process_pipeline_outlet_filter, | |
| ) | |
| from open_webui.routers.memories import query_memory, QueryMemoryForm | |
| from open_webui.utils.webhook import post_webhook | |
| from open_webui.utils.files import ( | |
| convert_markdown_base64_images, | |
| get_file_url_from_base64, | |
| get_image_base64_from_url, | |
| get_image_url_from_base64, | |
| ) | |
| from open_webui.models.users import UserModel | |
| from open_webui.models.functions import Functions | |
| from open_webui.models.models import Models | |
| from open_webui.retrieval.utils import get_sources_from_items | |
| from open_webui.utils.sanitize import sanitize_code | |
| from open_webui.utils.chat import generate_chat_completion | |
| from open_webui.utils.task import ( | |
| get_task_model_id, | |
| rag_template, | |
| tools_function_calling_generation_template, | |
| ) | |
| from open_webui.utils.misc import ( | |
| deep_update, | |
| extract_urls, | |
| get_message_list, | |
| add_or_update_system_message, | |
| add_or_update_user_message, | |
| get_last_user_message, | |
| get_last_user_message_item, | |
| get_last_assistant_message, | |
| get_system_message, | |
| prepend_to_first_user_message_content, | |
| convert_logit_bias_input_to_json, | |
| get_content_from_message, | |
| convert_output_to_messages, | |
| ) | |
| from open_webui.utils.tools import ( | |
| get_tools, | |
| get_updated_tool_function, | |
| has_tool_server_access, | |
| ) | |
| from open_webui.utils.plugin import load_function_module_by_id | |
| from open_webui.utils.filter import ( | |
| get_sorted_filter_ids, | |
| process_filter_functions, | |
| ) | |
| from open_webui.utils.code_interpreter import execute_code_jupyter | |
| from open_webui.utils.payload import apply_system_prompt_to_body | |
| from open_webui.utils.response import normalize_usage | |
| from open_webui.utils.mcp.client import MCPClient | |
| from open_webui.config import ( | |
| CACHE_DIR, | |
| DEFAULT_VOICE_MODE_PROMPT_TEMPLATE, | |
| DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, | |
| DEFAULT_CODE_INTERPRETER_PROMPT, | |
| CODE_INTERPRETER_BLOCKED_MODULES, | |
| ) | |
| from open_webui.env import ( | |
| GLOBAL_LOG_LEVEL, | |
| ENABLE_CHAT_RESPONSE_BASE64_IMAGE_URL_CONVERSION, | |
| CHAT_RESPONSE_STREAM_DELTA_CHUNK_SIZE, | |
| CHAT_RESPONSE_MAX_TOOL_CALL_RETRIES, | |
| BYPASS_MODEL_ACCESS_CONTROL, | |
| ENABLE_REALTIME_CHAT_SAVE, | |
| ENABLE_QUERIES_CACHE, | |
| RAG_SYSTEM_CONTEXT, | |
| ENABLE_FORWARD_USER_INFO_HEADERS, | |
| FORWARD_SESSION_INFO_HEADER_CHAT_ID, | |
| ) | |
| from open_webui.utils.headers import include_user_info_headers | |
| from open_webui.constants import TASKS | |
| logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) | |
| log = logging.getLogger(__name__) | |
| DEFAULT_REASONING_TAGS = [ | |
| ("<think>", "</think>"), | |
| ("<thinking>", "</thinking>"), | |
| ("<reason>", "</reason>"), | |
| ("<reasoning>", "</reasoning>"), | |
| ("<thought>", "</thought>"), | |
| ("<Thought>", "</Thought>"), | |
| ("<|begin_of_thought|>", "<|end_of_thought|>"), | |
| ("◁think▷", "◁/think▷"), | |
| ] | |
| DEFAULT_SOLUTION_TAGS = [("<|begin_of_solution|>", "<|end_of_solution|>")] | |
| DEFAULT_CODE_INTERPRETER_TAGS = [("<code_interpreter>", "</code_interpreter>")] | |
| def output_id(prefix: str) -> str: | |
| """Generate OR-style ID: prefix + 24-char hex UUID.""" | |
| return f"{prefix}_{uuid4().hex[:24]}" | |
| def get_citation_source_from_tool_result( | |
| tool_name: str, tool_params: dict, tool_result: str, tool_id: str = "" | |
| ) -> list[dict]: | |
| """ | |
| Parse a tool's result and convert it to source dicts for citation display. | |
| Follows the source format conventions from get_sources_from_items: | |
| - source: file/item info object with id, name, type | |
| - document: list of document contents | |
| - metadata: list of metadata objects with source, file_id, name fields | |
| Returns a list of sources (usually one, but query_knowledge_files may return multiple). | |
| """ | |
| try: | |
| if tool_name == "search_web": | |
| # Parse JSON array: [{"title": "...", "link": "...", "snippet": "..."}] | |
| results = json.loads(tool_result) | |
| documents = [] | |
| metadata = [] | |
| for result in results: | |
| title = result.get("title", "") | |
| link = result.get("link", "") | |
| snippet = result.get("snippet", "") | |
| documents.append(f"{title}\n{snippet}") | |
| metadata.append( | |
| { | |
| "source": link, | |
| "name": title, | |
| "url": link, | |
| } | |
| ) | |
| return [ | |
| { | |
| "source": {"name": "search_web", "id": "search_web"}, | |
| "document": documents, | |
| "metadata": metadata, | |
| } | |
| ] | |
| elif tool_name == "view_knowledge_file": | |
| file_data = json.loads(tool_result) | |
| filename = file_data.get("filename", "Unknown File") | |
| file_id = file_data.get("id", "") | |
| knowledge_name = file_data.get("knowledge_name", "") | |
| return [ | |
| { | |
| "source": { | |
| "id": file_id, | |
| "name": filename, | |
| "type": "file", | |
| }, | |
| "document": [file_data.get("content", "")], | |
| "metadata": [ | |
| { | |
| "file_id": file_id, | |
| "name": filename, | |
| "source": filename, | |
| **( | |
| {"knowledge_name": knowledge_name} | |
| if knowledge_name | |
| else {} | |
| ), | |
| } | |
| ], | |
| } | |
| ] | |
| elif tool_name == "query_knowledge_files": | |
| chunks = json.loads(tool_result) | |
| # Group chunks by source for better citation display | |
| # Each unique source becomes a separate source entry | |
| sources_by_file = {} | |
| for chunk in chunks: | |
| source_name = chunk.get("source", "Unknown") | |
| file_id = chunk.get("file_id", "") | |
| note_id = chunk.get("note_id", "") | |
| chunk_type = chunk.get("type", "file") | |
| content = chunk.get("content", "") | |
| # Use file_id or note_id as the key | |
| key = file_id or note_id or source_name | |
| if key not in sources_by_file: | |
| sources_by_file[key] = { | |
| "source": { | |
| "id": file_id or note_id, | |
| "name": source_name, | |
| "type": chunk_type, | |
| }, | |
| "document": [], | |
| "metadata": [], | |
| } | |
| sources_by_file[key]["document"].append(content) | |
| sources_by_file[key]["metadata"].append( | |
| { | |
| "file_id": file_id, | |
| "name": source_name, | |
| "source": source_name, | |
| **({"note_id": note_id} if note_id else {}), | |
| } | |
| ) | |
| # Return all grouped sources as a list | |
| if sources_by_file: | |
| return list(sources_by_file.values()) | |
| # Empty result fallback | |
| return [] | |
| else: | |
| # Fallback for other tools | |
| return [ | |
| { | |
| "source": { | |
| "name": tool_name, | |
| "type": "tool", | |
| "id": tool_id or tool_name, | |
| }, | |
| "document": [str(tool_result)], | |
| "metadata": [{"source": tool_name, "name": tool_name}], | |
| } | |
| ] | |
| except Exception as e: | |
| log.exception(f"Error parsing tool result for {tool_name}: {e}") | |
| return [ | |
| { | |
| "source": {"name": tool_name, "type": "tool"}, | |
| "document": [str(tool_result)], | |
| "metadata": [{"source": tool_name}], | |
| } | |
| ] | |
| def split_content_and_whitespace(content): | |
| content_stripped = content.rstrip() | |
| original_whitespace = ( | |
| content[len(content_stripped) :] if len(content) > len(content_stripped) else "" | |
| ) | |
| return content_stripped, original_whitespace | |
| def is_opening_code_block(content): | |
| backtick_segments = content.split("```") | |
| # Even number of segments means the last backticks are opening a new block | |
| return len(backtick_segments) > 1 and len(backtick_segments) % 2 == 0 | |
| def serialize_output(output: list) -> str: | |
| """ | |
| Convert OR-aligned output items to HTML for display. | |
| For LLM consumption, use convert_output_to_messages() instead. | |
| """ | |
| content = "" | |
| # First pass: collect function_call_output items by call_id for lookup | |
| tool_outputs = {} | |
| for item in output: | |
| if item.get("type") == "function_call_output": | |
| tool_outputs[item.get("call_id")] = item | |
| # Second pass: render items in order | |
| for idx, item in enumerate(output): | |
| item_type = item.get("type", "") | |
| if item_type == "message": | |
| for content_part in item.get("content", []): | |
| if "text" in content_part: | |
| text = content_part.get("text", "").strip() | |
| if text: | |
| content = f"{content}{text}\n" | |
| elif item_type == "function_call": | |
| # Render tool call inline with its result (if available) | |
| if content and not content.endswith("\n"): | |
| content += "\n" | |
| call_id = item.get("call_id", "") | |
| name = item.get("name", "") | |
| arguments = item.get("arguments", "") | |
| result_item = tool_outputs.get(call_id) | |
| if result_item: | |
| result_text = "" | |
| for out in result_item.get("output", []): | |
| if "text" in out: | |
| result_text += out.get("text", "") | |
| files = result_item.get("files") | |
| embeds = result_item.get("embeds", "") | |
| content += f'<details type="tool_calls" done="true" id="{call_id}" name="{name}" arguments="{html.escape(json.dumps(arguments))}" result="{html.escape(json.dumps(result_text, ensure_ascii=False))}" files="{html.escape(json.dumps(files)) if files else ""}" embeds="{html.escape(json.dumps(embeds))}">\n<summary>Tool Executed</summary>\n</details>\n' | |
| else: | |
| content += f'<details type="tool_calls" done="false" id="{call_id}" name="{name}" arguments="{html.escape(json.dumps(arguments))}">\n<summary>Executing...</summary>\n</details>\n' | |
| elif item_type == "function_call_output": | |
| # Already handled inline with function_call above | |
| pass | |
| elif item_type == "reasoning": | |
| reasoning_content = "" | |
| # Check for 'summary' (new structure) or 'content' (legacy/fallback) | |
| source_list = item.get("summary", []) or item.get("content", []) | |
| for content_part in source_list: | |
| if "text" in content_part: | |
| reasoning_content += content_part.get("text", "") | |
| elif "summary" in content_part: # Handle potential nested logic if any | |
| pass | |
| reasoning_content = reasoning_content.strip() | |
| duration = item.get("duration") | |
| status = item.get("status", "in_progress") | |
| # Infer completion: if this reasoning item is NOT the last item, | |
| # render as done (a subsequent item means reasoning is complete) | |
| is_last_item = idx == len(output) - 1 | |
| if content and not content.endswith("\n"): | |
| content += "\n" | |
| display = html.escape( | |
| "\n".join( | |
| (f"> {line}" if not line.startswith(">") else line) | |
| for line in reasoning_content.splitlines() | |
| ) | |
| ) | |
| if status == "completed" or duration is not None or not is_last_item: | |
| content = f'{content}<details type="reasoning" done="true" duration="{duration or 0}">\n<summary>Thought for {duration or 0} seconds</summary>\n{display}\n</details>\n' | |
| else: | |
| content = f'{content}<details type="reasoning" done="false">\n<summary>Thinking…</summary>\n{display}\n</details>\n' | |
| elif item_type == "open_webui:code_interpreter": | |
| content_stripped, original_whitespace = split_content_and_whitespace( | |
| content | |
| ) | |
| if is_opening_code_block(content_stripped): | |
| content = content_stripped.rstrip("`").rstrip() + original_whitespace | |
| else: | |
| content = content_stripped + original_whitespace | |
| if content and not content.endswith("\n"): | |
| content += "\n" | |
| return content.strip() | |
| def deep_merge(target, source): | |
| """ | |
| Merge source into target recursively (returning new structure). | |
| - Dicts: Recursive merge. | |
| - Strings: Concatenation. | |
| - Others: Overwrite. | |
| """ | |
| if isinstance(target, dict) and isinstance(source, dict): | |
| new_target = target.copy() | |
| for k, v in source.items(): | |
| if k in new_target: | |
| new_target[k] = deep_merge(new_target[k], v) | |
| else: | |
| new_target[k] = v | |
| return new_target | |
| elif isinstance(target, str) and isinstance(source, str): | |
| return target + source | |
| else: | |
| return source | |
| def handle_responses_streaming_event( | |
| data: dict, | |
| current_output: list, | |
| ) -> tuple[list, dict | None]: | |
| """ | |
| Handle Responses API streaming events in a pure functional way. | |
| Args: | |
| data: The event data | |
| current_output: List of output items (treated as immutable) | |
| Returns: | |
| tuple[list, dict | None]: (new_output, metadata) | |
| - new_output: The updated output list. | |
| - metadata: Metadata to emit (e.g. usage), {} if update occurred, None if skip. | |
| """ | |
| # Default: no change | |
| # Note: treating current_output as immutable, but avoiding full deepcopy for perf. | |
| # We will shallow copy only if we need to modify the list structure or items. | |
| event_type = data.get("type", "") | |
| if event_type == "response.output_item.added": | |
| item = data.get("item", {}) | |
| if item: | |
| new_output = list(current_output) | |
| new_output.append(item) | |
| return new_output, None | |
| return current_output, None | |
| elif event_type == "response.content_part.added": | |
| part = data.get("part", {}) | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| if current_output and 0 <= output_index < len(current_output): | |
| new_output = list(current_output) | |
| # Copy the item to mutate it | |
| item = new_output[output_index].copy() | |
| new_output[output_index] = item | |
| if "content" not in item: | |
| item["content"] = [] | |
| else: | |
| # Copy content list | |
| item["content"] = list(item["content"]) | |
| if item.get("type") == "reasoning": | |
| # Reasoning items should not have content parts | |
| pass | |
| else: | |
| item["content"].append(part) | |
| return new_output, None | |
| return current_output, None | |
| elif event_type == "response.reasoning_summary_part.added": | |
| part = data.get("part", {}) | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| if current_output and 0 <= output_index < len(current_output): | |
| new_output = list(current_output) | |
| item = new_output[output_index].copy() | |
| new_output[output_index] = item | |
| if "summary" not in item: | |
| item["summary"] = [] | |
| else: | |
| item["summary"] = list(item["summary"]) | |
| item["summary"].append(part) | |
| return new_output, None | |
| return current_output, None | |
| elif event_type.startswith("response.") and event_type.endswith(".delta"): | |
| # Generic Delta Handling | |
| parts = event_type.split(".") | |
| if len(parts) >= 3: | |
| delta_type = parts[1] | |
| delta = data.get("delta", "") | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| if current_output and 0 <= output_index < len(current_output): | |
| new_output = list(current_output) | |
| item = new_output[output_index].copy() | |
| new_output[output_index] = item | |
| item_type = item.get("type", "") | |
| # Determine target field and object based on delta_type and item_type | |
| if delta_type == "function_call_arguments": | |
| key = "arguments" | |
| if item_type == "function_call": | |
| # Function call args are usually strings | |
| item[key] = item.get(key, "") + str(delta) | |
| else: | |
| # Generic handling, refined by item type below | |
| pass | |
| if item_type == "message": | |
| # Message items: "text"/"output_text" -> "text" | |
| # "reasoning_text" -> Skipped (should use reasoning item) | |
| if delta_type in ["text", "output_text"]: | |
| key = "text" | |
| elif delta_type in ["reasoning_text", "reasoning_summary_text"]: | |
| # Skip reasoning updates for message items | |
| return new_output, None | |
| else: | |
| key = delta_type | |
| content_index = data.get("content_index", 0) | |
| if "content" not in item: | |
| item["content"] = [] | |
| else: | |
| item["content"] = list(item["content"]) | |
| content_list = item["content"] | |
| while len(content_list) <= content_index: | |
| content_list.append({"type": "text", "text": ""}) | |
| # Copy the part to mutate it | |
| part = content_list[content_index].copy() | |
| content_list[content_index] = part | |
| current_val = part.get(key) | |
| if current_val is None: | |
| # Initialize based on delta type | |
| current_val = {} if isinstance(delta, dict) else "" | |
| part[key] = deep_merge(current_val, delta) | |
| elif item_type == "reasoning": | |
| # Reasoning items: "reasoning_text"/"reasoning_summary_text" -> "text" | |
| # "text"/"output_text" -> Skipped (should use message item) | |
| if delta_type == "reasoning_summary_text": | |
| # Summary updates -> item['summary'] | |
| key = "text" | |
| summary_index = data.get("summary_index", 0) | |
| if "summary" not in item: | |
| item["summary"] = [] | |
| else: | |
| item["summary"] = list(item["summary"]) | |
| summary_list = item["summary"] | |
| while len(summary_list) <= summary_index: | |
| summary_list.append( | |
| {"type": "summary_text", "text": ""} | |
| ) | |
| part = summary_list[summary_index].copy() | |
| summary_list[summary_index] = part | |
| target_val = part.get(key, "") | |
| part[key] = deep_merge(target_val, delta) | |
| elif delta_type == "reasoning_text": | |
| # Reasoning body updates -> item['content'] | |
| key = "text" | |
| content_index = data.get("content_index", 0) | |
| if "content" not in item: | |
| item["content"] = [] | |
| else: | |
| item["content"] = list(item["content"]) | |
| content_list = item["content"] | |
| while len(content_list) <= content_index: | |
| # Reasoning content parts default to text | |
| content_list.append({"type": "text", "text": ""}) | |
| part = content_list[content_index].copy() | |
| content_list[content_index] = part | |
| target_val = part.get(key, "") | |
| part[key] = deep_merge(target_val, delta) | |
| elif delta_type in ["text", "output_text"]: | |
| return new_output, None | |
| else: | |
| # Fallback just in case other deltas target reasoning? | |
| pass | |
| else: | |
| # Fallback for other item types | |
| if delta_type in ["text", "output_text"]: | |
| key = "text" | |
| else: | |
| key = delta_type | |
| current_val = item.get(key) | |
| if current_val is None: | |
| current_val = {} if isinstance(delta, dict) else "" | |
| item[key] = deep_merge(current_val, delta) | |
| return new_output, None | |
| elif event_type.startswith("response.") and event_type.endswith(".done"): | |
| # Delta Events: response.content_part.done, response.text.done, etc. | |
| parts = event_type.split(".") | |
| if len(parts) >= 3: | |
| type_name = parts[1] | |
| # 1. Handle specific Delta "done" signals | |
| if type_name == "content_part": | |
| # "Signaling that no further changes will occur to a content part" | |
| # If payloads contains the full part, we could update it. | |
| # Usually purely signaling in standard implementation, but we check payload. | |
| part = data.get("part") | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| if part and current_output and 0 <= output_index < len(current_output): | |
| new_output = list(current_output) | |
| item = new_output[output_index].copy() | |
| new_output[output_index] = item | |
| if "content" in item: | |
| item["content"] = list(item["content"]) | |
| content_index = data.get( | |
| "content_index", len(item["content"]) - 1 | |
| ) | |
| if 0 <= content_index < len(item["content"]): | |
| item["content"][content_index] = part | |
| return new_output, {} | |
| return current_output, None | |
| elif type_name == "reasoning_summary_part": | |
| part = data.get("part") | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| if part and current_output and 0 <= output_index < len(current_output): | |
| new_output = list(current_output) | |
| item = new_output[output_index].copy() | |
| new_output[output_index] = item | |
| if "summary" in item: | |
| item["summary"] = list(item["summary"]) | |
| summary_index = data.get( | |
| "summary_index", len(item["summary"]) - 1 | |
| ) | |
| if 0 <= summary_index < len(item["summary"]): | |
| item["summary"][summary_index] = part | |
| return new_output, {} | |
| return current_output, None | |
| # 2. Skip Output Item done (handled specifically below) | |
| if type_name == "output_item": | |
| pass | |
| # 3. Generic Field Done (text.done, audio.done) | |
| elif type_name not in ["completed", "failed"]: | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| if current_output and 0 <= output_index < len(current_output): | |
| key = ( | |
| "text" | |
| if type_name | |
| in [ | |
| "text", | |
| "output_text", | |
| "reasoning_text", | |
| "reasoning_summary_text", | |
| ] | |
| else type_name | |
| ) | |
| if type_name == "function_call_arguments": | |
| key = "arguments" | |
| if key in data: | |
| final_value = data[key] | |
| new_output = list(current_output) | |
| item = new_output[output_index].copy() | |
| new_output[output_index] = item | |
| item_type = item.get("type", "") | |
| if type_name == "function_call_arguments": | |
| if item_type == "function_call": | |
| item["arguments"] = final_value | |
| elif item_type == "message": | |
| content_index = data.get("content_index", 0) | |
| if "content" in item: | |
| item["content"] = list(item["content"]) | |
| if len(item["content"]) > content_index: | |
| part = item["content"][content_index].copy() | |
| item["content"][content_index] = part | |
| part[key] = final_value | |
| elif item_type == "reasoning": | |
| item["status"] = "completed" | |
| else: | |
| item[key] = final_value | |
| return new_output, {} | |
| return current_output, None | |
| elif event_type == "response.output_item.done": | |
| # Delta Event: Output item complete | |
| item = data.get("item") | |
| output_index = data.get("output_index", len(current_output) - 1) | |
| new_output = list(current_output) | |
| if item and 0 <= output_index < len(current_output): | |
| new_output[output_index] = item | |
| elif item: | |
| new_output.append(item) | |
| return new_output, {} | |
| elif event_type == "response.completed": | |
| # State Machine Event: Completed | |
| response_data = data.get("response", {}) | |
| final_output = response_data.get("output") | |
| new_output = final_output if final_output is not None else current_output | |
| # Ensure reasoning items are marked as completed in the final output | |
| if new_output: | |
| for item in new_output: | |
| if ( | |
| item.get("type") == "reasoning" | |
| and item.get("status") != "completed" | |
| ): | |
| item["status"] = "completed" | |
| return new_output, {"usage": response_data.get("usage"), "done": True} | |
| elif event_type == "response.in_progress": | |
| # State Machine Event: In Progress | |
| # We could extract metadata if needed, but for now just acknowledge iteration | |
| return current_output, None | |
| elif event_type == "response.failed": | |
| # State Machine Event: Failed | |
| error = data.get("response", {}).get("error", {}) | |
| return current_output, {"error": error} | |
| else: | |
| return current_output, None | |
| def apply_source_context_to_messages( | |
| request: Request, | |
| messages: list, | |
| sources: list, | |
| user_message: str, | |
| ) -> list: | |
| """ | |
| Build source context from citation sources and apply to messages. | |
| Uses RAG template to format context for model consumption. | |
| """ | |
| if not sources or not user_message: | |
| return messages | |
| context_string = "" | |
| citation_idx = {} | |
| for source in sources: | |
| for doc, meta in zip(source.get("document", []), source.get("metadata", [])): | |
| src_id = meta.get("source") or source.get("source", {}).get("id") or "N/A" | |
| if src_id not in citation_idx: | |
| citation_idx[src_id] = len(citation_idx) + 1 | |
| src_name = source.get("source", {}).get("name") | |
| context_string += ( | |
| f'<source id="{citation_idx[src_id]}"' | |
| + (f' name="{src_name}"' if src_name else "") | |
| + f">{doc}</source>\n" | |
| ) | |
| context_string = context_string.strip() | |
| if not context_string: | |
| return messages | |
| if RAG_SYSTEM_CONTEXT: | |
| return add_or_update_system_message( | |
| rag_template( | |
| request.app.state.config.RAG_TEMPLATE, context_string, user_message | |
| ), | |
| messages, | |
| append=True, | |
| ) | |
| else: | |
| return add_or_update_user_message( | |
| rag_template( | |
| request.app.state.config.RAG_TEMPLATE, context_string, user_message | |
| ), | |
| messages, | |
| append=False, | |
| ) | |
| def process_tool_result( | |
| request, | |
| tool_function_name, | |
| tool_result, | |
| tool_type, | |
| direct_tool=False, | |
| metadata=None, | |
| user=None, | |
| ): | |
| tool_result_embeds = [] | |
| if isinstance(tool_result, HTMLResponse): | |
| content_disposition = tool_result.headers.get("Content-Disposition", "") | |
| if "inline" in content_disposition: | |
| content = tool_result.body.decode("utf-8", "replace") | |
| tool_result_embeds.append(content) | |
| if 200 <= tool_result.status_code < 300: | |
| tool_result = { | |
| "status": "success", | |
| "code": "ui_component", | |
| "message": f"{tool_function_name}: Embedded UI result is active and visible to the user.", | |
| } | |
| elif 400 <= tool_result.status_code < 500: | |
| tool_result = { | |
| "status": "error", | |
| "code": "ui_component", | |
| "message": f"{tool_function_name}: Client error {tool_result.status_code} from embedded UI result.", | |
| } | |
| elif 500 <= tool_result.status_code < 600: | |
| tool_result = { | |
| "status": "error", | |
| "code": "ui_component", | |
| "message": f"{tool_function_name}: Server error {tool_result.status_code} from embedded UI result.", | |
| } | |
| else: | |
| tool_result = { | |
| "status": "error", | |
| "code": "ui_component", | |
| "message": f"{tool_function_name}: Unexpected status code {tool_result.status_code} from embedded UI result.", | |
| } | |
| else: | |
| tool_result = tool_result.body.decode("utf-8", "replace") | |
| elif (tool_type in ("external", "action") and isinstance(tool_result, tuple)) or ( | |
| direct_tool and isinstance(tool_result, list) and len(tool_result) == 2 | |
| ): | |
| tool_result, tool_response_headers = tool_result | |
| try: | |
| if not isinstance(tool_response_headers, dict): | |
| tool_response_headers = dict(tool_response_headers) | |
| except Exception as e: | |
| tool_response_headers = {} | |
| log.debug(e) | |
| if tool_response_headers and isinstance(tool_response_headers, dict): | |
| content_disposition = tool_response_headers.get( | |
| "Content-Disposition", | |
| tool_response_headers.get("content-disposition", ""), | |
| ) | |
| if "inline" in content_disposition: | |
| content_type = tool_response_headers.get( | |
| "Content-Type", | |
| tool_response_headers.get("content-type", ""), | |
| ) | |
| location = tool_response_headers.get( | |
| "Location", | |
| tool_response_headers.get("location", ""), | |
| ) | |
| if "text/html" in content_type: | |
| # Display as iframe embed | |
| tool_result_embeds.append(tool_result) | |
| tool_result = { | |
| "status": "success", | |
| "code": "ui_component", | |
| "message": f"{tool_function_name}: Embedded UI result is active and visible to the user.", | |
| } | |
| elif location: | |
| tool_result_embeds.append(location) | |
| tool_result = { | |
| "status": "success", | |
| "code": "ui_component", | |
| "message": f"{tool_function_name}: Embedded UI result is active and visible to the user.", | |
| } | |
| tool_result_files = [] | |
| if isinstance(tool_result, list): | |
| if tool_type == "mcp": # MCP | |
| tool_response = [] | |
| for item in tool_result: | |
| if isinstance(item, dict): | |
| if item.get("type") == "text": | |
| text = item.get("text", "") | |
| if isinstance(text, str): | |
| try: | |
| text = json.loads(text) | |
| except json.JSONDecodeError: | |
| pass | |
| tool_response.append(text) | |
| elif item.get("type") in ["image", "audio"]: | |
| file_url = get_file_url_from_base64( | |
| request, | |
| f"data:{item.get('mimeType')};base64,{item.get('data', item.get('blob', ''))}", | |
| { | |
| "chat_id": metadata.get("chat_id", None), | |
| "message_id": metadata.get("message_id", None), | |
| "session_id": metadata.get("session_id", None), | |
| "result": item, | |
| }, | |
| user, | |
| ) | |
| tool_result_files.append( | |
| { | |
| "type": item.get("type", "data"), | |
| "url": file_url, | |
| } | |
| ) | |
| tool_result = tool_response[0] if len(tool_response) == 1 else tool_response | |
| else: # OpenAPI | |
| for item in tool_result: | |
| if isinstance(item, str) and item.startswith("data:"): | |
| tool_result_files.append( | |
| { | |
| "type": "data", | |
| "content": item, | |
| } | |
| ) | |
| tool_result.remove(item) | |
| if isinstance(tool_result, list): | |
| tool_result = {"results": tool_result} | |
| if isinstance(tool_result, dict) or isinstance(tool_result, list): | |
| tool_result = json.dumps(tool_result, indent=2, ensure_ascii=False) | |
| return tool_result, tool_result_files, tool_result_embeds | |
| async def chat_completion_tools_handler( | |
| request: Request, body: dict, extra_params: dict, user: UserModel, models, tools | |
| ) -> tuple[dict, dict]: | |
| async def get_content_from_response(response) -> Optional[str]: | |
| content = None | |
| if hasattr(response, "body_iterator"): | |
| async for chunk in response.body_iterator: | |
| data = json.loads(chunk.decode("utf-8", "replace")) | |
| content = data["choices"][0]["message"]["content"] | |
| # Cleanup any remaining background tasks if necessary | |
| if response.background is not None: | |
| await response.background() | |
| else: | |
| content = response["choices"][0]["message"]["content"] | |
| return content | |
| def get_tools_function_calling_payload(messages, task_model_id, content): | |
| user_message = get_last_user_message(messages) | |
| if user_message and messages and messages[-1]["role"] == "user": | |
| # Remove the last user message to avoid duplication | |
| messages = messages[:-1] | |
| recent_messages = messages[-4:] if len(messages) > 4 else messages | |
| chat_history = "\n".join( | |
| f"{message['role'].upper()}: \"\"\"{get_content_from_message(message)}\"\"\"" | |
| for message in recent_messages | |
| ) | |
| prompt = ( | |
| f"History:\n{chat_history}\nQuery: {user_message}" | |
| if chat_history | |
| else f"Query: {user_message}" | |
| ) | |
| return { | |
| "model": task_model_id, | |
| "messages": [ | |
| {"role": "system", "content": content}, | |
| {"role": "user", "content": prompt}, | |
| ], | |
| "stream": False, | |
| "metadata": {"task": str(TASKS.FUNCTION_CALLING)}, | |
| } | |
| event_caller = extra_params["__event_call__"] | |
| event_emitter = extra_params["__event_emitter__"] | |
| metadata = extra_params["__metadata__"] | |
| task_model_id = get_task_model_id( | |
| body["model"], | |
| request.app.state.config.TASK_MODEL, | |
| request.app.state.config.TASK_MODEL_EXTERNAL, | |
| models, | |
| ) | |
| skip_files = False | |
| sources = [] | |
| specs = [tool["spec"] for tool in tools.values()] | |
| tools_specs = json.dumps(specs, ensure_ascii=False) | |
| if request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE != "": | |
| template = request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE | |
| else: | |
| template = DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE | |
| tools_function_calling_prompt = tools_function_calling_generation_template( | |
| template, tools_specs | |
| ) | |
| payload = get_tools_function_calling_payload( | |
| body["messages"], task_model_id, tools_function_calling_prompt | |
| ) | |
| try: | |
| response = await generate_chat_completion(request, form_data=payload, user=user) | |
| log.debug(f"{response=}") | |
| content = await get_content_from_response(response) | |
| log.debug(f"{content=}") | |
| if not content: | |
| return body, {} | |
| try: | |
| content = content[content.find("{") : content.rfind("}") + 1] | |
| if not content: | |
| raise Exception("No JSON object found in the response") | |
| result = json.loads(content) | |
| async def tool_call_handler(tool_call): | |
| nonlocal skip_files | |
| log.debug(f"{tool_call=}") | |
| tool_function_name = tool_call.get("name", None) | |
| if tool_function_name not in tools: | |
| return body, {} | |
| tool_function_params = tool_call.get("parameters", {}) | |
| tool = None | |
| tool_type = "" | |
| direct_tool = False | |
| try: | |
| tool = tools[tool_function_name] | |
| tool_type = tool.get("type", "") | |
| direct_tool = tool.get("direct", False) | |
| spec = tool.get("spec", {}) | |
| allowed_params = ( | |
| spec.get("parameters", {}).get("properties", {}).keys() | |
| ) | |
| tool_function_params = { | |
| k: v | |
| for k, v in tool_function_params.items() | |
| if k in allowed_params | |
| } | |
| if tool.get("direct", False): | |
| tool_result = await event_caller( | |
| { | |
| "type": "execute:tool", | |
| "data": { | |
| "id": str(uuid4()), | |
| "name": tool_function_name, | |
| "params": tool_function_params, | |
| "server": tool.get("server", {}), | |
| "session_id": metadata.get("session_id", None), | |
| }, | |
| } | |
| ) | |
| else: | |
| tool_function = tool["callable"] | |
| tool_result = await tool_function(**tool_function_params) | |
| except Exception as e: | |
| tool_result = str(e) | |
| tool_result, tool_result_files, tool_result_embeds = ( | |
| process_tool_result( | |
| request, | |
| tool_function_name, | |
| tool_result, | |
| tool_type, | |
| direct_tool, | |
| metadata, | |
| user, | |
| ) | |
| ) | |
| if event_emitter: | |
| if tool_result_files: | |
| await event_emitter( | |
| { | |
| "type": "files", | |
| "data": { | |
| "files": tool_result_files, | |
| }, | |
| } | |
| ) | |
| if tool_result_embeds: | |
| await event_emitter( | |
| { | |
| "type": "embeds", | |
| "data": { | |
| "embeds": tool_result_embeds, | |
| }, | |
| } | |
| ) | |
| if tool_result: | |
| tool = tools[tool_function_name] | |
| tool_id = tool.get("tool_id", "") | |
| tool_name = ( | |
| f"{tool_id}/{tool_function_name}" | |
| if tool_id | |
| else f"{tool_function_name}" | |
| ) | |
| # Citation is enabled for this tool | |
| sources.append( | |
| { | |
| "source": { | |
| "name": (f"{tool_name}"), | |
| }, | |
| "document": [str(tool_result)], | |
| "metadata": [ | |
| { | |
| "source": (f"{tool_name}"), | |
| "parameters": tool_function_params, | |
| } | |
| ], | |
| "tool_result": True, | |
| } | |
| ) | |
| if ( | |
| tools[tool_function_name] | |
| .get("metadata", {}) | |
| .get("file_handler", False) | |
| ): | |
| skip_files = True | |
| # check if "tool_calls" in result | |
| if result.get("tool_calls"): | |
| for tool_call in result.get("tool_calls"): | |
| await tool_call_handler(tool_call) | |
| else: | |
| await tool_call_handler(result) | |
| except Exception as e: | |
| log.debug(f"Error: {e}") | |
| content = None | |
| except Exception as e: | |
| log.debug(f"Error: {e}") | |
| content = None | |
| log.debug(f"tool_contexts: {sources}") | |
| if skip_files and "files" in body.get("metadata", {}): | |
| del body["metadata"]["files"] | |
| return body, {"sources": sources} | |
| async def chat_memory_handler( | |
| request: Request, form_data: dict, extra_params: dict, user | |
| ): | |
| try: | |
| results = await query_memory( | |
| request, | |
| QueryMemoryForm( | |
| **{ | |
| "content": get_last_user_message(form_data["messages"]) or "", | |
| "k": 3, | |
| } | |
| ), | |
| user, | |
| ) | |
| except Exception as e: | |
| log.debug(e) | |
| results = None | |
| user_context = "" | |
| if results and hasattr(results, "documents"): | |
| if results.documents and len(results.documents) > 0: | |
| for doc_idx, doc in enumerate(results.documents[0]): | |
| created_at_date = "Unknown Date" | |
| if results.metadatas[0][doc_idx].get("created_at"): | |
| created_at_timestamp = results.metadatas[0][doc_idx]["created_at"] | |
| created_at_date = time.strftime( | |
| "%Y-%m-%d", time.localtime(created_at_timestamp) | |
| ) | |
| user_context += f"{doc_idx + 1}. [{created_at_date}] {doc}\n" | |
| form_data["messages"] = add_or_update_system_message( | |
| f"User Context:\n{user_context}\n", form_data["messages"], append=True | |
| ) | |
| return form_data | |
| async def chat_web_search_handler( | |
| request: Request, form_data: dict, extra_params: dict, user | |
| ): | |
| event_emitter = extra_params["__event_emitter__"] | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "web_search", | |
| "description": "Searching the web", | |
| "done": False, | |
| }, | |
| } | |
| ) | |
| messages = form_data["messages"] | |
| user_message = get_last_user_message(messages) | |
| queries = [] | |
| try: | |
| res = await generate_queries( | |
| request, | |
| { | |
| "model": form_data["model"], | |
| "messages": messages, | |
| "prompt": user_message, | |
| "type": "web_search", | |
| }, | |
| user, | |
| ) | |
| response = res["choices"][0]["message"]["content"] | |
| try: | |
| bracket_start = response.find("{") | |
| bracket_end = response.rfind("}") + 1 | |
| if bracket_start == -1 or bracket_end == -1: | |
| raise Exception("No JSON object found in the response") | |
| response = response[bracket_start:bracket_end] | |
| queries = json.loads(response) | |
| queries = queries.get("queries", []) | |
| except Exception as e: | |
| queries = [response] | |
| if ENABLE_QUERIES_CACHE: | |
| request.state.cached_queries = queries | |
| except Exception as e: | |
| log.exception(e) | |
| queries = [user_message] | |
| # Check if generated queries are empty | |
| if len(queries) == 1 and queries[0].strip() == "": | |
| queries = [user_message] | |
| # Check if queries are not found | |
| if len(queries) == 0: | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "web_search", | |
| "description": "No search query generated", | |
| "done": True, | |
| }, | |
| } | |
| ) | |
| return form_data | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "web_search_queries_generated", | |
| "queries": queries, | |
| "done": False, | |
| }, | |
| } | |
| ) | |
| try: | |
| results = await process_web_search( | |
| request, | |
| SearchForm(queries=queries), | |
| user=user, | |
| ) | |
| if results: | |
| files = form_data.get("files", []) | |
| if results.get("collection_names"): | |
| for col_idx, collection_name in enumerate( | |
| results.get("collection_names") | |
| ): | |
| files.append( | |
| { | |
| "collection_name": collection_name, | |
| "name": ", ".join(queries), | |
| "type": "web_search", | |
| "urls": results["filenames"], | |
| "queries": queries, | |
| } | |
| ) | |
| elif results.get("docs"): | |
| # Invoked when bypass embedding and retrieval is set to True | |
| docs = results["docs"] | |
| files.append( | |
| { | |
| "docs": docs, | |
| "name": ", ".join(queries), | |
| "type": "web_search", | |
| "urls": results["filenames"], | |
| "queries": queries, | |
| } | |
| ) | |
| form_data["files"] = files | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "web_search", | |
| "description": "Searched {{count}} sites", | |
| "urls": results["filenames"], | |
| "items": results.get("items", []), | |
| "done": True, | |
| }, | |
| } | |
| ) | |
| else: | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "web_search", | |
| "description": "No search results found", | |
| "done": True, | |
| "error": True, | |
| }, | |
| } | |
| ) | |
| except Exception as e: | |
| log.exception(e) | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "web_search", | |
| "description": "An error occurred while searching the web", | |
| "queries": queries, | |
| "done": True, | |
| "error": True, | |
| }, | |
| } | |
| ) | |
| return form_data | |
| def get_images_from_messages(message_list): | |
| images = [] | |
| for message in reversed(message_list): | |
| message_images = [] | |
| for file in message.get("files", []): | |
| if file.get("type") == "image": | |
| message_images.append(file.get("url")) | |
| elif file.get("content_type", "").startswith("image/"): | |
| message_images.append(file.get("url")) | |
| if message_images: | |
| images.append(message_images) | |
| return images | |
| def get_image_urls(delta_images, request, metadata, user) -> list[str]: | |
| if not isinstance(delta_images, list): | |
| return [] | |
| image_urls = [] | |
| for img in delta_images: | |
| if not isinstance(img, dict) or img.get("type") != "image_url": | |
| continue | |
| url = img.get("image_url", {}).get("url") | |
| if not url: | |
| continue | |
| if url.startswith("data:image/png;base64"): | |
| url = get_image_url_from_base64(request, url, metadata, user) | |
| image_urls.append(url) | |
| return image_urls | |
| def add_file_context(messages: list, chat_id: str, user) -> list: | |
| """ | |
| Add file URLs to messages for native function calling. | |
| """ | |
| if not chat_id or chat_id.startswith("local:"): | |
| return messages | |
| chat = Chats.get_chat_by_id_and_user_id(chat_id, user.id) | |
| if not chat: | |
| return messages | |
| history = chat.chat.get("history", {}) | |
| stored_messages = get_message_list( | |
| history.get("messages", {}), history.get("currentId") | |
| ) | |
| def format_file_tag(file): | |
| attrs = f'type="{file.get("type", "file")}" url="{file["url"]}"' | |
| if file.get("content_type"): | |
| attrs += f' content_type="{file["content_type"]}"' | |
| if file.get("name"): | |
| attrs += f' name="{file["name"]}"' | |
| return f"<file {attrs}/>" | |
| for message, stored_message in zip(messages, stored_messages): | |
| files_with_urls = [ | |
| file | |
| for file in stored_message.get("files", []) | |
| if file.get("url") and not file.get("url").startswith("data:") | |
| ] | |
| if not files_with_urls: | |
| continue | |
| file_tags = [format_file_tag(file) for file in files_with_urls] | |
| file_context = ( | |
| "<attached_files>\n" + "\n".join(file_tags) + "\n</attached_files>\n\n" | |
| ) | |
| content = message.get("content", "") | |
| if isinstance(content, list): | |
| message["content"] = [{"type": "text", "text": file_context}] + content | |
| else: | |
| message["content"] = file_context + content | |
| return messages | |
| async def chat_image_generation_handler( | |
| request: Request, form_data: dict, extra_params: dict, user | |
| ): | |
| metadata = extra_params.get("__metadata__", {}) | |
| chat_id = metadata.get("chat_id", None) | |
| __event_emitter__ = extra_params.get("__event_emitter__", None) | |
| if not chat_id or not isinstance(chat_id, str) or not __event_emitter__: | |
| return form_data | |
| if chat_id.startswith("local:"): | |
| message_list = form_data.get("messages", []) | |
| else: | |
| chat = Chats.get_chat_by_id_and_user_id(chat_id, user.id) | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": {"description": "Creating image", "done": False}, | |
| } | |
| ) | |
| messages_map = chat.chat.get("history", {}).get("messages", {}) | |
| message_id = chat.chat.get("history", {}).get("currentId") | |
| message_list = get_message_list(messages_map, message_id) | |
| user_message = get_last_user_message(message_list) | |
| prompt = user_message | |
| message_images = get_images_from_messages(message_list) | |
| # Limit to first 2 sets of images | |
| # We may want to change this in the future to allow more images | |
| input_images = [] | |
| for idx, images in enumerate(message_images): | |
| if idx >= 2: | |
| break | |
| for image in images: | |
| input_images.append(image) | |
| system_message_content = "" | |
| if len(input_images) > 0 and request.app.state.config.ENABLE_IMAGE_EDIT: | |
| # Edit image(s) | |
| try: | |
| images = await image_edits( | |
| request=request, | |
| form_data=EditImageForm(**{"prompt": prompt, "image": input_images}), | |
| metadata={ | |
| "chat_id": metadata.get("chat_id", None), | |
| "message_id": metadata.get("message_id", None), | |
| }, | |
| user=user, | |
| ) | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": {"description": "Image created", "done": True}, | |
| } | |
| ) | |
| await __event_emitter__( | |
| { | |
| "type": "files", | |
| "data": { | |
| "files": [ | |
| { | |
| "type": "image", | |
| "url": image["url"], | |
| } | |
| for image in images | |
| ] | |
| }, | |
| } | |
| ) | |
| system_message_content = "<context>The requested image has been edited and created and is now being shown to the user. Let them know that it has been generated.</context>" | |
| except Exception as e: | |
| log.debug(e) | |
| error_message = "" | |
| if isinstance(e, HTTPException): | |
| if e.detail and isinstance(e.detail, dict): | |
| error_message = e.detail.get("message", str(e.detail)) | |
| else: | |
| error_message = str(e.detail) | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": { | |
| "description": f"An error occurred while generating an image", | |
| "done": True, | |
| }, | |
| } | |
| ) | |
| system_message_content = f"<context>Image generation was attempted but failed. The system is currently unable to generate the image. Tell the user that the following error occurred: {error_message}</context>" | |
| else: | |
| # Create image(s) | |
| if request.app.state.config.ENABLE_IMAGE_PROMPT_GENERATION: | |
| try: | |
| res = await generate_image_prompt( | |
| request, | |
| { | |
| "model": form_data["model"], | |
| "messages": form_data["messages"], | |
| }, | |
| user, | |
| ) | |
| response = res["choices"][0]["message"]["content"] | |
| try: | |
| bracket_start = response.find("{") | |
| bracket_end = response.rfind("}") + 1 | |
| if bracket_start == -1 or bracket_end == -1: | |
| raise Exception("No JSON object found in the response") | |
| response = response[bracket_start:bracket_end] | |
| response = json.loads(response) | |
| prompt = response.get("prompt", []) | |
| except Exception as e: | |
| prompt = user_message | |
| except Exception as e: | |
| log.exception(e) | |
| prompt = user_message | |
| try: | |
| images = await image_generations( | |
| request=request, | |
| form_data=CreateImageForm(**{"prompt": prompt}), | |
| metadata={ | |
| "chat_id": metadata.get("chat_id", None), | |
| "message_id": metadata.get("message_id", None), | |
| }, | |
| user=user, | |
| ) | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": {"description": "Image created", "done": True}, | |
| } | |
| ) | |
| await __event_emitter__( | |
| { | |
| "type": "files", | |
| "data": { | |
| "files": [ | |
| { | |
| "type": "image", | |
| "url": image["url"], | |
| } | |
| for image in images | |
| ] | |
| }, | |
| } | |
| ) | |
| system_message_content = "<context>The requested image has been created by the system successfully and is now being shown to the user. Let the user know that the image they requested has been generated and is now shown in the chat.</context>" | |
| except Exception as e: | |
| log.debug(e) | |
| error_message = "" | |
| if isinstance(e, HTTPException): | |
| if e.detail and isinstance(e.detail, dict): | |
| error_message = e.detail.get("message", str(e.detail)) | |
| else: | |
| error_message = str(e.detail) | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": { | |
| "description": f"An error occurred while generating an image", | |
| "done": True, | |
| }, | |
| } | |
| ) | |
| system_message_content = f"<context>Image generation was attempted but failed because of an error. The system is currently unable to generate the image. Tell the user that the following error occurred: {error_message}</context>" | |
| if system_message_content: | |
| form_data["messages"] = add_or_update_system_message( | |
| system_message_content, form_data["messages"] | |
| ) | |
| return form_data | |
| async def chat_completion_files_handler( | |
| request: Request, body: dict, extra_params: dict, user: UserModel | |
| ) -> tuple[dict, dict[str, list]]: | |
| __event_emitter__ = extra_params["__event_emitter__"] | |
| sources = [] | |
| if files := body.get("metadata", {}).get("files", None): | |
| # Check if all files are in full context mode | |
| all_full_context = all(item.get("context") == "full" for item in files) | |
| queries = [] | |
| if not all_full_context: | |
| try: | |
| queries_response = await generate_queries( | |
| request, | |
| { | |
| "model": body["model"], | |
| "messages": body["messages"], | |
| "type": "retrieval", | |
| }, | |
| user, | |
| ) | |
| queries_response = queries_response["choices"][0]["message"]["content"] | |
| try: | |
| bracket_start = queries_response.find("{") | |
| bracket_end = queries_response.rfind("}") + 1 | |
| if bracket_start == -1 or bracket_end == -1: | |
| raise Exception("No JSON object found in the response") | |
| queries_response = queries_response[bracket_start:bracket_end] | |
| queries_response = json.loads(queries_response) | |
| except Exception as e: | |
| queries_response = {"queries": [queries_response]} | |
| queries = queries_response.get("queries", []) | |
| except: | |
| pass | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "queries_generated", | |
| "queries": queries, | |
| "done": False, | |
| }, | |
| } | |
| ) | |
| if len(queries) == 0: | |
| queries = [get_last_user_message(body["messages"])] | |
| try: | |
| # Directly await async get_sources_from_items (no thread needed - fully async now) | |
| sources = await get_sources_from_items( | |
| request=request, | |
| items=files, | |
| queries=queries, | |
| embedding_function=lambda query, prefix: request.app.state.EMBEDDING_FUNCTION( | |
| query, prefix=prefix, user=user | |
| ), | |
| k=request.app.state.config.TOP_K, | |
| reranking_function=( | |
| ( | |
| lambda query, documents: request.app.state.RERANKING_FUNCTION( | |
| query, documents, user=user | |
| ) | |
| ) | |
| if request.app.state.RERANKING_FUNCTION | |
| else None | |
| ), | |
| k_reranker=request.app.state.config.TOP_K_RERANKER, | |
| r=request.app.state.config.RELEVANCE_THRESHOLD, | |
| hybrid_bm25_weight=request.app.state.config.HYBRID_BM25_WEIGHT, | |
| hybrid_search=request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
| full_context=all_full_context | |
| or request.app.state.config.RAG_FULL_CONTEXT, | |
| user=user, | |
| ) | |
| except Exception as e: | |
| log.exception(e) | |
| log.debug(f"rag_contexts:sources: {sources}") | |
| unique_ids = set() | |
| for source in sources or []: | |
| if not source or len(source.keys()) == 0: | |
| continue | |
| documents = source.get("document") or [] | |
| metadatas = source.get("metadata") or [] | |
| src_info = source.get("source") or {} | |
| for index, _ in enumerate(documents): | |
| metadata = metadatas[index] if index < len(metadatas) else None | |
| _id = ( | |
| (metadata or {}).get("source") | |
| or (src_info or {}).get("id") | |
| or "N/A" | |
| ) | |
| unique_ids.add(_id) | |
| sources_count = len(unique_ids) | |
| await __event_emitter__( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "sources_retrieved", | |
| "count": sources_count, | |
| "done": True, | |
| }, | |
| } | |
| ) | |
| return body, {"sources": sources} | |
| def apply_params_to_form_data(form_data, model): | |
| params = form_data.pop("params", {}) | |
| custom_params = params.pop("custom_params", {}) | |
| open_webui_params = { | |
| "stream_response": bool, | |
| "stream_delta_chunk_size": int, | |
| "function_calling": str, | |
| "reasoning_tags": list, | |
| "system": str, | |
| } | |
| for key in list(params.keys()): | |
| if key in open_webui_params: | |
| del params[key] | |
| if custom_params: | |
| # Attempt to parse custom_params if they are strings | |
| for key, value in custom_params.items(): | |
| if isinstance(value, str): | |
| try: | |
| # Attempt to parse the string as JSON | |
| custom_params[key] = json.loads(value) | |
| except json.JSONDecodeError: | |
| # If it fails, keep the original string | |
| pass | |
| # If custom_params are provided, merge them into params | |
| params = deep_update(params, custom_params) | |
| if model.get("owned_by") == "ollama": | |
| # Ollama specific parameters | |
| form_data["options"] = params | |
| else: | |
| if isinstance(params, dict): | |
| for key, value in params.items(): | |
| if value is not None: | |
| form_data[key] = value | |
| if "logit_bias" in params and params["logit_bias"] is not None: | |
| try: | |
| logit_bias = convert_logit_bias_input_to_json(params["logit_bias"]) | |
| if logit_bias: | |
| form_data["logit_bias"] = json.loads(logit_bias) | |
| except Exception as e: | |
| log.exception(f"Error parsing logit_bias: {e}") | |
| return form_data | |
| async def convert_url_images_to_base64(form_data): | |
| messages = form_data.get("messages", []) | |
| for message in messages: | |
| content = message.get("content") | |
| if not isinstance(content, list): | |
| continue | |
| new_content = [] | |
| for item in content: | |
| if not isinstance(item, dict) or item.get("type") != "image_url": | |
| new_content.append(item) | |
| continue | |
| image_url = item.get("image_url", {}).get("url", "") | |
| if image_url.startswith("data:image/"): | |
| new_content.append(item) | |
| continue | |
| try: | |
| base64_data = await asyncio.to_thread( | |
| get_image_base64_from_url, image_url | |
| ) | |
| new_content.append( | |
| { | |
| "type": "image_url", | |
| "image_url": {"url": base64_data}, | |
| } | |
| ) | |
| except Exception as e: | |
| log.debug(f"Error converting image URL to base64: {e}") | |
| new_content.append(item) | |
| message["content"] = new_content | |
| return form_data | |
| def process_messages_with_output(messages: list[dict]) -> list[dict]: | |
| """ | |
| Process messages with OR-aligned output items for LLM consumption. | |
| For assistant messages with 'output' field, produces properly formatted | |
| OpenAI-style messages (tool_calls + tool results). Strips 'output' before LLM. | |
| """ | |
| processed = [] | |
| for message in messages: | |
| if message.get("role") == "assistant" and message.get("output"): | |
| # Use output items for clean OpenAI-format messages | |
| output_messages = convert_output_to_messages(message["output"]) | |
| if output_messages: | |
| processed.extend(output_messages) | |
| continue | |
| # Strip 'output' field before adding (LLM shouldn't see it) | |
| clean_message = {k: v for k, v in message.items() if k != "output"} | |
| processed.append(clean_message) | |
| return processed | |
| async def process_chat_payload(request, form_data, user, metadata, model): | |
| # Pipeline Inlet -> Filter Inlet -> Chat Memory -> Chat Web Search -> Chat Image Generation | |
| # -> Chat Code Interpreter (Form Data Update) -> (Default) Chat Tools Function Calling | |
| # -> Chat Files | |
| form_data = apply_params_to_form_data(form_data, model) | |
| log.debug(f"form_data: {form_data}") | |
| # Process messages with OR-aligned output items for clean LLM messages | |
| form_data["messages"] = process_messages_with_output(form_data.get("messages", [])) | |
| system_message = get_system_message(form_data.get("messages", [])) | |
| if system_message: # Chat Controls/User Settings | |
| try: | |
| form_data = apply_system_prompt_to_body( | |
| system_message.get("content"), form_data, metadata, user, replace=True | |
| ) # Required to handle system prompt variables | |
| except: | |
| pass | |
| form_data = await convert_url_images_to_base64(form_data) | |
| event_emitter = get_event_emitter(metadata) | |
| event_caller = get_event_call(metadata) | |
| extra_params = { | |
| "__event_emitter__": event_emitter, | |
| "__event_call__": event_caller, | |
| "__user__": user.model_dump() if isinstance(user, UserModel) else {}, | |
| "__metadata__": metadata, | |
| "__oauth_token__": await get_system_oauth_token(request, user), | |
| "__request__": request, | |
| "__model__": model, | |
| "__chat_id__": metadata.get("chat_id"), | |
| "__message_id__": metadata.get("message_id"), | |
| } | |
| # Initialize events to store additional event to be sent to the client | |
| # Initialize contexts and citation | |
| if getattr(request.state, "direct", False) and hasattr(request.state, "model"): | |
| models = { | |
| request.state.model["id"]: request.state.model, | |
| } | |
| else: | |
| models = request.app.state.MODELS | |
| task_model_id = get_task_model_id( | |
| form_data["model"], | |
| request.app.state.config.TASK_MODEL, | |
| request.app.state.config.TASK_MODEL_EXTERNAL, | |
| models, | |
| ) | |
| events = [] | |
| sources = [] | |
| # Folder "Project" handling | |
| # Check if the request has chat_id and is inside of a folder | |
| chat_id = metadata.get("chat_id", None) | |
| if chat_id and user: | |
| chat = Chats.get_chat_by_id_and_user_id(chat_id, user.id) | |
| if chat and chat.folder_id: | |
| folder = Folders.get_folder_by_id_and_user_id(chat.folder_id, user.id) | |
| if folder and folder.data: | |
| if "system_prompt" in folder.data: | |
| form_data = apply_system_prompt_to_body( | |
| folder.data["system_prompt"], form_data, metadata, user | |
| ) | |
| if "files" in folder.data: | |
| form_data["files"] = [ | |
| *folder.data["files"], | |
| *form_data.get("files", []), | |
| ] | |
| # Model "Knowledge" handling | |
| user_message = get_last_user_message(form_data["messages"]) | |
| model_knowledge = model.get("info", {}).get("meta", {}).get("knowledge", False) | |
| if ( | |
| model_knowledge | |
| and metadata.get("params", {}).get("function_calling") != "native" | |
| ): | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "knowledge_search", | |
| "query": user_message, | |
| "done": False, | |
| }, | |
| } | |
| ) | |
| knowledge_files = [] | |
| for item in model_knowledge: | |
| if item.get("collection_name"): | |
| knowledge_files.append( | |
| { | |
| "id": item.get("collection_name"), | |
| "name": item.get("name"), | |
| "legacy": True, | |
| } | |
| ) | |
| elif item.get("collection_names"): | |
| knowledge_files.append( | |
| { | |
| "name": item.get("name"), | |
| "type": "collection", | |
| "collection_names": item.get("collection_names"), | |
| "legacy": True, | |
| } | |
| ) | |
| else: | |
| knowledge_files.append(item) | |
| files = form_data.get("files", []) | |
| files.extend(knowledge_files) | |
| form_data["files"] = files | |
| variables = form_data.pop("variables", None) | |
| # Process the form_data through the pipeline | |
| try: | |
| form_data = await process_pipeline_inlet_filter( | |
| request, form_data, user, models | |
| ) | |
| except Exception as e: | |
| raise e | |
| try: | |
| filter_ids = get_sorted_filter_ids( | |
| request, model, metadata.get("filter_ids", []) | |
| ) | |
| filter_functions = Functions.get_functions_by_ids(filter_ids) | |
| form_data, flags = await process_filter_functions( | |
| request=request, | |
| filter_functions=filter_functions, | |
| filter_type="inlet", | |
| form_data=form_data, | |
| extra_params=extra_params, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"{e}") | |
| features = form_data.pop("features", None) or {} | |
| extra_params["__features__"] = features | |
| if features: | |
| if "voice" in features and features["voice"]: | |
| if request.app.state.config.VOICE_MODE_PROMPT_TEMPLATE != None: | |
| if request.app.state.config.VOICE_MODE_PROMPT_TEMPLATE != "": | |
| template = request.app.state.config.VOICE_MODE_PROMPT_TEMPLATE | |
| else: | |
| template = DEFAULT_VOICE_MODE_PROMPT_TEMPLATE | |
| form_data["messages"] = add_or_update_system_message( | |
| template, | |
| form_data["messages"], | |
| ) | |
| if "memory" in features and features["memory"]: | |
| # Skip forced memory injection when native FC is enabled - model can use memory tools | |
| if metadata.get("params", {}).get("function_calling") != "native": | |
| form_data = await chat_memory_handler( | |
| request, form_data, extra_params, user | |
| ) | |
| if "web_search" in features and features["web_search"]: | |
| # Skip forced RAG web search when native FC is enabled - model can use web_search tool | |
| if metadata.get("params", {}).get("function_calling") != "native": | |
| form_data = await chat_web_search_handler( | |
| request, form_data, extra_params, user | |
| ) | |
| if "image_generation" in features and features["image_generation"]: | |
| # Skip forced image generation when native FC is enabled - model can use generate_image tool | |
| if metadata.get("params", {}).get("function_calling") != "native": | |
| form_data = await chat_image_generation_handler( | |
| request, form_data, extra_params, user | |
| ) | |
| if "code_interpreter" in features and features["code_interpreter"]: | |
| form_data["messages"] = add_or_update_user_message( | |
| ( | |
| request.app.state.config.CODE_INTERPRETER_PROMPT_TEMPLATE | |
| if request.app.state.config.CODE_INTERPRETER_PROMPT_TEMPLATE != "" | |
| else DEFAULT_CODE_INTERPRETER_PROMPT | |
| ), | |
| form_data["messages"], | |
| ) | |
| tool_ids = form_data.pop("tool_ids", None) | |
| files = form_data.pop("files", None) | |
| # Skills: inject manifest only — model uses view_skill tool to load full content on-demand | |
| user_skill_ids = form_data.pop("skill_ids", None) or [] | |
| model_skill_ids = model.get("info", {}).get("meta", {}).get("skillIds", []) | |
| all_skill_ids = list(set(user_skill_ids + model_skill_ids)) | |
| available_skills = [] | |
| if all_skill_ids: | |
| from open_webui.models.skills import Skills as SkillsModel | |
| accessible_skill_ids = { | |
| s.id for s in SkillsModel.get_skills_by_user_id(user.id, "read") | |
| } | |
| available_skills = [ | |
| s | |
| for sid in all_skill_ids | |
| if sid in accessible_skill_ids | |
| and (s := SkillsModel.get_skill_by_id(sid)) | |
| and s.is_active | |
| ] | |
| if available_skills: | |
| manifest = "<available_skills>\n" | |
| for skill in available_skills: | |
| manifest += f"<skill>\n<name>{skill.name}</name>\n<description>{skill.description or ''}</description>\n</skill>\n" | |
| manifest += "</available_skills>" | |
| form_data["messages"] = add_or_update_system_message( | |
| manifest, form_data["messages"], append=True | |
| ) | |
| prompt = get_last_user_message(form_data["messages"]) | |
| # TODO: re-enable URL extraction from prompt | |
| # urls = [] | |
| # if prompt and len(prompt or "") < 500 and (not files or len(files) == 0): | |
| # urls = extract_urls(prompt) | |
| if files: | |
| if not files: | |
| files = [] | |
| for file_item in files: | |
| if file_item.get("type", "file") == "folder": | |
| # Get folder files | |
| folder_id = file_item.get("id", None) | |
| if folder_id: | |
| folder = Folders.get_folder_by_id_and_user_id(folder_id, user.id) | |
| if folder and folder.data and "files" in folder.data: | |
| files = [f for f in files if f.get("id", None) != folder_id] | |
| files = [*files, *folder.data["files"]] | |
| # files = [*files, *[{"type": "url", "url": url, "name": url} for url in urls]] | |
| # Remove duplicate files based on their content | |
| files = list({json.dumps(f, sort_keys=True): f for f in files}.values()) | |
| metadata = { | |
| **metadata, | |
| "tool_ids": tool_ids, | |
| "files": files, | |
| } | |
| form_data["metadata"] = metadata | |
| # Server side tools | |
| tool_ids = metadata.get("tool_ids", None) | |
| # Client side tools | |
| direct_tool_servers = metadata.get("tool_servers", None) | |
| log.debug(f"{tool_ids=}") | |
| log.debug(f"{direct_tool_servers=}") | |
| tools_dict = {} | |
| mcp_clients = {} | |
| mcp_tools_dict = {} | |
| if tool_ids: | |
| for tool_id in tool_ids: | |
| if tool_id.startswith("server:mcp:"): | |
| try: | |
| server_id = tool_id[len("server:mcp:") :] | |
| mcp_server_connection = None | |
| for ( | |
| server_connection | |
| ) in request.app.state.config.TOOL_SERVER_CONNECTIONS: | |
| if ( | |
| server_connection.get("type", "") == "mcp" | |
| and server_connection.get("info", {}).get("id") == server_id | |
| ): | |
| mcp_server_connection = server_connection | |
| break | |
| if not mcp_server_connection: | |
| log.error(f"MCP server with id {server_id} not found") | |
| continue | |
| # Check access control for MCP server | |
| if not has_tool_server_access(user, mcp_server_connection): | |
| log.warning( | |
| f"Access denied to MCP server {server_id} for user {user.id}" | |
| ) | |
| continue | |
| auth_type = mcp_server_connection.get("auth_type", "") | |
| headers = {} | |
| if auth_type == "bearer": | |
| headers["Authorization"] = ( | |
| f"Bearer {mcp_server_connection.get('key', '')}" | |
| ) | |
| elif auth_type == "none": | |
| # No authentication | |
| pass | |
| elif auth_type == "session": | |
| headers["Authorization"] = ( | |
| f"Bearer {request.state.token.credentials}" | |
| ) | |
| elif auth_type == "system_oauth": | |
| oauth_token = extra_params.get("__oauth_token__", None) | |
| if oauth_token: | |
| headers["Authorization"] = ( | |
| f"Bearer {oauth_token.get('access_token', '')}" | |
| ) | |
| elif auth_type == "oauth_2.1": | |
| try: | |
| splits = server_id.split(":") | |
| server_id = splits[-1] if len(splits) > 1 else server_id | |
| oauth_token = await request.app.state.oauth_client_manager.get_oauth_token( | |
| user.id, f"mcp:{server_id}" | |
| ) | |
| if oauth_token: | |
| headers["Authorization"] = ( | |
| f"Bearer {oauth_token.get('access_token', '')}" | |
| ) | |
| except Exception as e: | |
| log.error(f"Error getting OAuth token: {e}") | |
| oauth_token = None | |
| connection_headers = mcp_server_connection.get("headers", None) | |
| if connection_headers and isinstance(connection_headers, dict): | |
| for key, value in connection_headers.items(): | |
| headers[key] = value | |
| # Add user info headers if enabled | |
| if ENABLE_FORWARD_USER_INFO_HEADERS and user: | |
| headers = include_user_info_headers(headers, user) | |
| if metadata and metadata.get("chat_id"): | |
| headers[FORWARD_SESSION_INFO_HEADER_CHAT_ID] = metadata.get( | |
| "chat_id" | |
| ) | |
| mcp_clients[server_id] = MCPClient() | |
| await mcp_clients[server_id].connect( | |
| url=mcp_server_connection.get("url", ""), | |
| headers=headers if headers else None, | |
| ) | |
| function_name_filter_list = mcp_server_connection.get( | |
| "config", {} | |
| ).get("function_name_filter_list", "") | |
| if isinstance(function_name_filter_list, str): | |
| function_name_filter_list = function_name_filter_list.split(",") | |
| tool_specs = await mcp_clients[server_id].list_tool_specs() | |
| for tool_spec in tool_specs: | |
| def make_tool_function(client, function_name): | |
| async def tool_function(**kwargs): | |
| return await client.call_tool( | |
| function_name, | |
| function_args=kwargs, | |
| ) | |
| return tool_function | |
| if function_name_filter_list: | |
| if not is_string_allowed( | |
| tool_spec["name"], function_name_filter_list | |
| ): | |
| # Skip this function | |
| continue | |
| tool_function = make_tool_function( | |
| mcp_clients[server_id], tool_spec["name"] | |
| ) | |
| mcp_tools_dict[f"{server_id}_{tool_spec['name']}"] = { | |
| "spec": { | |
| **tool_spec, | |
| "name": f"{server_id}_{tool_spec['name']}", | |
| }, | |
| "callable": tool_function, | |
| "type": "mcp", | |
| "client": mcp_clients[server_id], | |
| "direct": False, | |
| } | |
| except Exception as e: | |
| log.debug(e) | |
| if event_emitter: | |
| await event_emitter( | |
| { | |
| "type": "chat:message:error", | |
| "data": { | |
| "error": { | |
| "content": f"Failed to connect to MCP server '{server_id}'" | |
| } | |
| }, | |
| } | |
| ) | |
| continue | |
| tools_dict = await get_tools( | |
| request, | |
| tool_ids, | |
| user, | |
| { | |
| **extra_params, | |
| "__model__": models[task_model_id], | |
| "__messages__": form_data["messages"], | |
| "__files__": metadata.get("files", []), | |
| }, | |
| ) | |
| if mcp_tools_dict: | |
| tools_dict = {**tools_dict, **mcp_tools_dict} | |
| if direct_tool_servers: | |
| for tool_server in direct_tool_servers: | |
| tool_specs = tool_server.pop("specs", []) | |
| for tool in tool_specs: | |
| tools_dict[tool["name"]] = { | |
| "spec": tool, | |
| "direct": True, | |
| "server": tool_server, | |
| } | |
| if mcp_clients: | |
| metadata["mcp_clients"] = mcp_clients | |
| # Inject builtin tools for native function calling based on enabled features and model capability | |
| # Check if builtin_tools capability is enabled for this model (defaults to True if not specified) | |
| builtin_tools_enabled = ( | |
| model.get("info", {}).get("meta", {}).get("capabilities") or {} | |
| ).get("builtin_tools", True) | |
| if ( | |
| metadata.get("params", {}).get("function_calling") == "native" | |
| and builtin_tools_enabled | |
| ): | |
| # Add file context to user messages | |
| chat_id = metadata.get("chat_id") | |
| form_data["messages"] = add_file_context( | |
| form_data.get("messages", []), chat_id, user | |
| ) | |
| builtin_tools = get_builtin_tools( | |
| request, | |
| { | |
| **extra_params, | |
| "__event_emitter__": event_emitter, | |
| "__skill_ids__": [s.id for s in available_skills], | |
| }, | |
| features, | |
| model, | |
| ) | |
| for name, tool_dict in builtin_tools.items(): | |
| if name not in tools_dict: | |
| tools_dict[name] = tool_dict | |
| if tools_dict: | |
| if metadata.get("params", {}).get("function_calling") == "native": | |
| # If the function calling is native, then call the tools function calling handler | |
| metadata["tools"] = tools_dict | |
| form_data["tools"] = [ | |
| {"type": "function", "function": tool.get("spec", {})} | |
| for tool in tools_dict.values() | |
| ] | |
| else: | |
| # If the function calling is not native, then call the tools function calling handler | |
| try: | |
| form_data, flags = await chat_completion_tools_handler( | |
| request, form_data, extra_params, user, models, tools_dict | |
| ) | |
| sources.extend(flags.get("sources", [])) | |
| except Exception as e: | |
| log.exception(e) | |
| # Check if file context extraction is enabled for this model (default True) | |
| file_context_enabled = ( | |
| model.get("info", {}).get("meta", {}).get("capabilities") or {} | |
| ).get("file_context", True) | |
| if file_context_enabled: | |
| try: | |
| form_data, flags = await chat_completion_files_handler( | |
| request, form_data, extra_params, user | |
| ) | |
| sources.extend(flags.get("sources", [])) | |
| except Exception as e: | |
| log.exception(e) | |
| # If context is not empty, insert it into the messages | |
| if sources and prompt: | |
| form_data["messages"] = apply_source_context_to_messages( | |
| request, form_data["messages"], sources, prompt | |
| ) | |
| # If there are citations, add them to the data_items | |
| sources = [ | |
| source | |
| for source in sources | |
| if source.get("source", {}).get("name", "") | |
| or source.get("source", {}).get("id", "") | |
| ] | |
| if len(sources) > 0: | |
| events.append({"sources": sources}) | |
| if model_knowledge: | |
| await event_emitter( | |
| { | |
| "type": "status", | |
| "data": { | |
| "action": "knowledge_search", | |
| "query": user_message, | |
| "done": True, | |
| "hidden": True, | |
| }, | |
| } | |
| ) | |
| return form_data, metadata, events | |
| def get_event_emitter_and_caller(metadata): | |
| event_emitter = None | |
| event_caller = None | |
| if ( | |
| "session_id" in metadata | |
| and metadata["session_id"] | |
| and "chat_id" in metadata | |
| and metadata["chat_id"] | |
| and "message_id" in metadata | |
| and metadata["message_id"] | |
| ): | |
| event_emitter = get_event_emitter(metadata) | |
| event_caller = get_event_call(metadata) | |
| return event_emitter, event_caller | |
| def build_chat_response_context( | |
| request, form_data, user, model, metadata, tasks, events | |
| ): | |
| event_emitter, event_caller = get_event_emitter_and_caller(metadata) | |
| return { | |
| "request": request, | |
| "form_data": form_data, | |
| "user": user, | |
| "model": model, | |
| "metadata": metadata, | |
| "tasks": tasks, | |
| "events": events, | |
| "event_emitter": event_emitter, | |
| "event_caller": event_caller, | |
| } | |
| def get_response_data(response): | |
| if isinstance(response, list) and len(response) == 1: | |
| # If the response is a single-item list, unwrap it #17213 | |
| response = response[0] | |
| if isinstance(response, JSONResponse): | |
| if isinstance(response.body, bytes): | |
| try: | |
| response_data = json.loads(response.body.decode("utf-8", "replace")) | |
| except json.JSONDecodeError: | |
| response_data = {"error": {"detail": "Invalid JSON response"}} | |
| else: | |
| response_data = response | |
| elif isinstance(response, dict): | |
| response_data = response | |
| else: | |
| response_data = None | |
| return response, response_data | |
| def merge_events_into_response(response_data, events): | |
| if events and isinstance(events, list): | |
| extra_response = {} | |
| for event in events: | |
| if isinstance(event, dict): | |
| extra_response.update(event) | |
| else: | |
| extra_response[event] = True | |
| return { | |
| **extra_response, | |
| **response_data, | |
| } | |
| return response_data | |
| def build_response_object(response, response_data): | |
| if isinstance(response, dict): | |
| return response_data | |
| if isinstance(response, JSONResponse): | |
| return JSONResponse( | |
| content=response_data, | |
| headers=response.headers, | |
| status_code=response.status_code, | |
| ) | |
| return response | |
| async def get_system_oauth_token(request, user): | |
| oauth_token = None | |
| try: | |
| if request.cookies.get("oauth_session_id", None): | |
| oauth_token = await request.app.state.oauth_manager.get_oauth_token( | |
| user.id, | |
| request.cookies.get("oauth_session_id", None), | |
| ) | |
| except Exception as e: | |
| log.error(f"Error getting OAuth token: {e}") | |
| return oauth_token | |
| async def background_tasks_handler(ctx): | |
| request = ctx["request"] | |
| form_data = ctx["form_data"] | |
| user = ctx["user"] | |
| metadata = ctx["metadata"] | |
| tasks = ctx["tasks"] | |
| event_emitter = ctx["event_emitter"] | |
| message = None | |
| messages = [] | |
| if "chat_id" in metadata and not metadata["chat_id"].startswith("local:"): | |
| messages_map = Chats.get_messages_map_by_chat_id(metadata["chat_id"]) | |
| message = messages_map.get(metadata["message_id"]) if messages_map else None | |
| message_list = get_message_list(messages_map, metadata["message_id"]) | |
| # Remove details tags and files from the messages. | |
| # as get_message_list creates a new list, it does not affect | |
| # the original messages outside of this handler | |
| messages = [] | |
| for message in message_list: | |
| content = message.get("content", "") | |
| if isinstance(content, list): | |
| for item in content: | |
| if item.get("type") == "text": | |
| content = item["text"] | |
| break | |
| if isinstance(content, str): | |
| content = re.sub( | |
| r"<details\b[^>]*>.*?<\/details>|!\[.*?\]\(.*?\)", | |
| "", | |
| content, | |
| flags=re.S | re.I, | |
| ).strip() | |
| messages.append( | |
| { | |
| **message, | |
| "role": message.get( | |
| "role", "assistant" | |
| ), # Safe fallback for missing role | |
| "content": content, | |
| } | |
| ) | |
| else: | |
| # Local temp chat, get the model and message from the form_data | |
| message = get_last_user_message_item(form_data.get("messages", [])) | |
| messages = form_data.get("messages", []) | |
| if message: | |
| message["model"] = form_data.get("model") | |
| if message and "model" in message: | |
| if tasks and messages: | |
| if ( | |
| TASKS.FOLLOW_UP_GENERATION in tasks | |
| and tasks[TASKS.FOLLOW_UP_GENERATION] | |
| ): | |
| res = await generate_follow_ups( | |
| request, | |
| { | |
| "model": message["model"], | |
| "messages": messages, | |
| "message_id": metadata["message_id"], | |
| "chat_id": metadata["chat_id"], | |
| }, | |
| user, | |
| ) | |
| if res and isinstance(res, dict): | |
| if len(res.get("choices", [])) == 1: | |
| response_message = res.get("choices", [])[0].get("message", {}) | |
| follow_ups_string = response_message.get( | |
| "content" | |
| ) or response_message.get("reasoning_content", "") | |
| else: | |
| follow_ups_string = "" | |
| follow_ups_string = follow_ups_string[ | |
| follow_ups_string.find("{") : follow_ups_string.rfind("}") + 1 | |
| ] | |
| try: | |
| follow_ups = json.loads(follow_ups_string).get("follow_ups", []) | |
| await event_emitter( | |
| { | |
| "type": "chat:message:follow_ups", | |
| "data": { | |
| "follow_ups": follow_ups, | |
| }, | |
| } | |
| ) | |
| if not metadata.get("chat_id", "").startswith("local:"): | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "followUps": follow_ups, | |
| }, | |
| ) | |
| except Exception as e: | |
| pass | |
| if not metadata.get("chat_id", "").startswith( | |
| "local:" | |
| ): # Only update titles and tags for non-temp chats | |
| if TASKS.TITLE_GENERATION in tasks: | |
| user_message = get_last_user_message(messages) | |
| if user_message and len(user_message) > 100: | |
| user_message = user_message[:100] + "..." | |
| title = None | |
| if tasks[TASKS.TITLE_GENERATION]: | |
| res = await generate_title( | |
| request, | |
| { | |
| "model": message["model"], | |
| "messages": messages, | |
| "chat_id": metadata["chat_id"], | |
| }, | |
| user, | |
| ) | |
| if res and isinstance(res, dict): | |
| if len(res.get("choices", [])) == 1: | |
| response_message = res.get("choices", [])[0].get( | |
| "message", {} | |
| ) | |
| title_string = ( | |
| response_message.get("content") | |
| or response_message.get( | |
| "reasoning_content", | |
| ) | |
| or message.get("content", user_message) | |
| ) | |
| else: | |
| title_string = "" | |
| title_string = title_string[ | |
| title_string.find("{") : title_string.rfind("}") + 1 | |
| ] | |
| try: | |
| title = json.loads(title_string).get( | |
| "title", user_message | |
| ) | |
| except Exception as e: | |
| title = "" | |
| if not title: | |
| title = messages[0].get("content", user_message) | |
| Chats.update_chat_title_by_id(metadata["chat_id"], title) | |
| await event_emitter( | |
| { | |
| "type": "chat:title", | |
| "data": title, | |
| } | |
| ) | |
| if title == None and len(messages) == 2: | |
| title = messages[0].get("content", user_message) | |
| Chats.update_chat_title_by_id(metadata["chat_id"], title) | |
| await event_emitter( | |
| { | |
| "type": "chat:title", | |
| "data": message.get("content", user_message), | |
| } | |
| ) | |
| if TASKS.TAGS_GENERATION in tasks and tasks[TASKS.TAGS_GENERATION]: | |
| res = await generate_chat_tags( | |
| request, | |
| { | |
| "model": message["model"], | |
| "messages": messages, | |
| "chat_id": metadata["chat_id"], | |
| }, | |
| user, | |
| ) | |
| if res and isinstance(res, dict): | |
| if len(res.get("choices", [])) == 1: | |
| response_message = res.get("choices", [])[0].get( | |
| "message", {} | |
| ) | |
| tags_string = response_message.get( | |
| "content" | |
| ) or response_message.get("reasoning_content", "") | |
| else: | |
| tags_string = "" | |
| tags_string = tags_string[ | |
| tags_string.find("{") : tags_string.rfind("}") + 1 | |
| ] | |
| try: | |
| tags = json.loads(tags_string).get("tags", []) | |
| Chats.update_chat_tags_by_id( | |
| metadata["chat_id"], tags, user | |
| ) | |
| await event_emitter( | |
| { | |
| "type": "chat:tags", | |
| "data": tags, | |
| } | |
| ) | |
| except Exception as e: | |
| pass | |
| async def non_streaming_chat_response_handler(response, ctx): | |
| request = ctx["request"] | |
| user = ctx["user"] | |
| metadata = ctx["metadata"] | |
| events = ctx["events"] | |
| event_emitter = ctx["event_emitter"] | |
| response, response_data = get_response_data(response) | |
| if response_data is None: | |
| return response | |
| if event_emitter: | |
| try: | |
| if "error" in response_data: | |
| error = response_data.get("error") | |
| if isinstance(error, dict): | |
| error = error.get("detail", error) | |
| else: | |
| error = str(error) | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "error": {"content": error}, | |
| }, | |
| ) | |
| if isinstance(error, str) or isinstance(error, dict): | |
| await event_emitter( | |
| { | |
| "type": "chat:message:error", | |
| "data": {"error": {"content": error}}, | |
| } | |
| ) | |
| if "selected_model_id" in response_data: | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "selectedModelId": response_data["selected_model_id"], | |
| }, | |
| ) | |
| choices = response_data.get("choices", []) | |
| if choices and choices[0].get("message", {}).get("content"): | |
| content = response_data["choices"][0]["message"]["content"] | |
| if content: | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": response_data, | |
| } | |
| ) | |
| title = Chats.get_chat_title_by_id(metadata["chat_id"]) | |
| # Use output from backend if provided (OR-compliant backends), | |
| # otherwise generate from response content | |
| response_output = response_data.get("output") | |
| if not response_output: | |
| response_output = [ | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "completed", | |
| "role": "assistant", | |
| "content": [{"type": "output_text", "text": content}], | |
| } | |
| ] | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "done": True, | |
| "content": content, | |
| "output": response_output, | |
| "title": title, | |
| }, | |
| } | |
| ) | |
| # Save message in the database | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "role": "assistant", | |
| "content": content, | |
| "output": response_output, | |
| }, | |
| ) | |
| # Send a webhook notification if the user is not active | |
| if not Users.is_user_active(user.id): | |
| webhook_url = Users.get_user_webhook_url_by_id(user.id) | |
| if webhook_url: | |
| await post_webhook( | |
| request.app.state.WEBUI_NAME, | |
| webhook_url, | |
| f"{title} - {request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}\n\n{content}", | |
| { | |
| "action": "chat", | |
| "message": content, | |
| "title": title, | |
| "url": f"{request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}", | |
| }, | |
| ) | |
| await background_tasks_handler(ctx) | |
| response = build_response_object( | |
| response, merge_events_into_response(response_data, events) | |
| ) | |
| except Exception as e: | |
| log.debug(f"Error occurred while processing request: {e}") | |
| pass | |
| return response | |
| if isinstance(response, dict): | |
| response = merge_events_into_response(response_data, events) | |
| return response | |
| async def streaming_chat_response_handler(response, ctx): | |
| request = ctx["request"] | |
| form_data = ctx["form_data"] | |
| user = ctx["user"] | |
| model = ctx["model"] | |
| metadata = ctx["metadata"] | |
| events = ctx["events"] | |
| event_emitter = ctx["event_emitter"] | |
| event_caller = ctx["event_caller"] | |
| extra_params = { | |
| "__event_emitter__": event_emitter, | |
| "__event_call__": event_caller, | |
| "__user__": user.model_dump() if isinstance(user, UserModel) else {}, | |
| "__metadata__": metadata, | |
| "__oauth_token__": await get_system_oauth_token(request, user), | |
| "__request__": request, | |
| "__model__": model, | |
| } | |
| filter_functions = [ | |
| Functions.get_function_by_id(filter_id) | |
| for filter_id in get_sorted_filter_ids( | |
| request, model, metadata.get("filter_ids", []) | |
| ) | |
| ] | |
| # Standard streaming response handler | |
| if event_emitter and event_caller: | |
| task_id = str(uuid4()) # Create a unique task ID. | |
| model_id = form_data.get("model", "") | |
| # Handle as a background task | |
| async def response_handler(response, events): | |
| def tag_output_handler(content_type, tags, content, output): | |
| """ | |
| Detect special tags (reasoning, solution, code_interpreter) in streaming | |
| content and create corresponding OR-aligned output items directly. | |
| Operates on output items instead of content_blocks. | |
| """ | |
| end_flag = False | |
| def extract_attributes(tag_content): | |
| """Extract attributes from a tag if they exist.""" | |
| attributes = {} | |
| if not tag_content: | |
| return attributes | |
| matches = re.findall(r'(\w+)\s*=\s*"([^"]+)"', tag_content) | |
| for key, value in matches: | |
| attributes[key] = value | |
| return attributes | |
| def get_last_text(out): | |
| """Get text from last message item, or empty string.""" | |
| if out and out[-1].get("type") == "message": | |
| parts = out[-1].get("content", []) | |
| if parts and parts[-1].get("type") == "output_text": | |
| return parts[-1].get("text", "") | |
| return "" | |
| def set_last_text(out, text): | |
| """Set text on last message item's output_text.""" | |
| if out and out[-1].get("type") == "message": | |
| parts = out[-1].get("content", []) | |
| if parts and parts[-1].get("type") == "output_text": | |
| parts[-1]["text"] = text | |
| # Map content_type to output item type | |
| output_type_map = { | |
| "reasoning": "reasoning", | |
| "solution": "message", # solution tags just produce text | |
| "code_interpreter": "open_webui:code_interpreter", | |
| } | |
| output_item_type = output_type_map.get(content_type, content_type) | |
| last_type = output[-1].get("type", "") if output else "" | |
| if last_type == "message": | |
| for start_tag, end_tag in tags: | |
| start_tag_pattern = rf"{re.escape(start_tag)}" | |
| if start_tag.startswith("<") and start_tag.endswith(">"): | |
| start_tag_pattern = ( | |
| rf"<{re.escape(start_tag[1:-1])}(\s.*?)?>" | |
| ) | |
| match = re.search(start_tag_pattern, content) | |
| if match: | |
| try: | |
| attr_content = match.group(1) if match.group(1) else "" | |
| except: | |
| attr_content = "" | |
| attributes = extract_attributes(attr_content) | |
| before_tag = content[: match.start()] | |
| after_tag = content[match.end() :] | |
| # Remove the start tag and everything after from last message | |
| current_text = get_last_text(output) | |
| set_last_text( | |
| output, | |
| current_text.replace(match.group(0) + after_tag, ""), | |
| ) | |
| if before_tag: | |
| set_last_text(output, before_tag) | |
| if not get_last_text(output).strip(): | |
| # Remove empty message item | |
| if output and output[-1].get("type") == "message": | |
| output.pop() | |
| # Append the new output item | |
| if output_item_type == "reasoning": | |
| output.append( | |
| { | |
| "type": "reasoning", | |
| "id": output_id("r"), | |
| "status": "in_progress", | |
| "start_tag": start_tag, | |
| "end_tag": end_tag, | |
| "attributes": attributes, | |
| "content": [], | |
| "summary": None, | |
| "started_at": time.time(), | |
| } | |
| ) | |
| elif output_item_type == "open_webui:code_interpreter": | |
| output.append( | |
| { | |
| "type": "open_webui:code_interpreter", | |
| "id": output_id("ci"), | |
| "status": "in_progress", | |
| "start_tag": start_tag, | |
| "end_tag": end_tag, | |
| "attributes": attributes, | |
| "lang": attributes.get("lang", "python"), | |
| "code": "", | |
| "output": None, | |
| "started_at": time.time(), | |
| } | |
| ) | |
| else: | |
| # solution or other text-producing tag | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| {"type": "output_text", "text": ""} | |
| ], | |
| "_tag_type": content_type, | |
| "start_tag": start_tag, | |
| "end_tag": end_tag, | |
| "attributes": attributes, | |
| "started_at": time.time(), | |
| } | |
| ) | |
| if after_tag: | |
| # Set the after_tag content on the new item | |
| if output_item_type == "reasoning": | |
| output[-1]["content"] = [ | |
| {"type": "output_text", "text": after_tag} | |
| ] | |
| elif output_item_type == "open_webui:code_interpreter": | |
| output[-1]["code"] = after_tag | |
| else: | |
| set_last_text(output, after_tag) | |
| tag_output_handler( | |
| content_type, tags, after_tag, output | |
| ) | |
| break | |
| elif ( | |
| (last_type == "reasoning" and content_type == "reasoning") | |
| or ( | |
| last_type == "open_webui:code_interpreter" | |
| and content_type == "code_interpreter" | |
| ) | |
| or ( | |
| last_type == "message" | |
| and output[-1].get("_tag_type") == content_type | |
| ) | |
| ): | |
| item = output[-1] | |
| start_tag = item.get("start_tag", "") | |
| end_tag = item.get("end_tag", "") | |
| if end_tag.startswith("<") and end_tag.endswith(">"): | |
| end_tag_pattern = rf"{re.escape(end_tag)}" | |
| else: | |
| end_tag_pattern = rf"{re.escape(end_tag)}" | |
| if re.search(end_tag_pattern, content): | |
| end_flag = True | |
| # Get the block content | |
| if last_type == "reasoning": | |
| parts = item.get("content", []) | |
| block_content = "" | |
| if parts and parts[-1].get("type") == "output_text": | |
| block_content = parts[-1].get("text", "") | |
| elif last_type == "open_webui:code_interpreter": | |
| block_content = item.get("code", "") | |
| else: | |
| block_content = get_last_text(output) | |
| # Strip start and end tags from content | |
| start_tag_pattern = rf"{re.escape(start_tag)}" | |
| if start_tag.startswith("<") and start_tag.endswith(">"): | |
| start_tag_pattern = ( | |
| rf"<{re.escape(start_tag[1:-1])}(\s.*?)?>" | |
| ) | |
| block_content = re.sub( | |
| start_tag_pattern, "", block_content | |
| ).strip() | |
| end_tag_regex = re.compile(end_tag_pattern, re.DOTALL) | |
| split_content = end_tag_regex.split(block_content, maxsplit=1) | |
| block_content = ( | |
| split_content[0].strip() if split_content else "" | |
| ) | |
| leftover_content = ( | |
| split_content[1].strip() if len(split_content) > 1 else "" | |
| ) | |
| if block_content: | |
| # Update the item with final content | |
| if last_type == "reasoning": | |
| item["content"] = [ | |
| {"type": "output_text", "text": block_content} | |
| ] | |
| item["ended_at"] = time.time() | |
| item["duration"] = int( | |
| item["ended_at"] - item["started_at"] | |
| ) | |
| item["status"] = "completed" | |
| elif last_type == "open_webui:code_interpreter": | |
| item["code"] = block_content | |
| item["ended_at"] = time.time() | |
| item["duration"] = int( | |
| item["ended_at"] - item["started_at"] | |
| ) | |
| else: | |
| set_last_text(output, block_content) | |
| item["ended_at"] = time.time() | |
| # Reset by appending a new message item for leftover | |
| if content_type != "code_interpreter": | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| { | |
| "type": "output_text", | |
| "text": leftover_content, | |
| } | |
| ], | |
| } | |
| ) | |
| else: | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| { | |
| "type": "output_text", | |
| "text": leftover_content, | |
| } | |
| ], | |
| } | |
| ) | |
| else: | |
| # Remove the block if content is empty | |
| output.pop() | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| { | |
| "type": "output_text", | |
| "text": leftover_content, | |
| } | |
| ], | |
| } | |
| ) | |
| # Clean processed content | |
| start_tag_clean = rf"{re.escape(start_tag)}" | |
| if start_tag.startswith("<") and start_tag.endswith(">"): | |
| start_tag_clean = rf"<{re.escape(start_tag[1:-1])}(\s.*?)?>" | |
| content = re.sub( | |
| rf"{start_tag_clean}(.|\n)*?{re.escape(end_tag)}", | |
| "", | |
| content, | |
| flags=re.DOTALL, | |
| ) | |
| return content, output, end_flag | |
| message = Chats.get_message_by_id_and_message_id( | |
| metadata["chat_id"], metadata["message_id"] | |
| ) | |
| tool_calls = [] | |
| last_assistant_message = None | |
| try: | |
| if form_data["messages"][-1]["role"] == "assistant": | |
| last_assistant_message = get_last_assistant_message( | |
| form_data["messages"] | |
| ) | |
| except Exception as e: | |
| pass | |
| content = ( | |
| message.get("content", "") | |
| if message | |
| else last_assistant_message if last_assistant_message else "" | |
| ) | |
| # Initialize output: use existing from message if continuing, else create new | |
| existing_output = message.get("output") if message else None | |
| if existing_output: | |
| output = existing_output | |
| else: | |
| # Only create an initial message item if there is content to initialize with | |
| if content: | |
| output = [ | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [{"type": "output_text", "text": content}], | |
| } | |
| ] | |
| else: | |
| output = [] | |
| usage = None | |
| reasoning_tags_param = metadata.get("params", {}).get("reasoning_tags") | |
| DETECT_REASONING_TAGS = reasoning_tags_param is not False | |
| DETECT_CODE_INTERPRETER = metadata.get("features", {}).get( | |
| "code_interpreter", False | |
| ) | |
| reasoning_tags = [] | |
| if DETECT_REASONING_TAGS: | |
| if ( | |
| isinstance(reasoning_tags_param, list) | |
| and len(reasoning_tags_param) == 2 | |
| ): | |
| reasoning_tags = [ | |
| (reasoning_tags_param[0], reasoning_tags_param[1]) | |
| ] | |
| else: | |
| reasoning_tags = DEFAULT_REASONING_TAGS | |
| try: | |
| for event in events: | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": event, | |
| } | |
| ) | |
| # Save message in the database | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| **event, | |
| }, | |
| ) | |
| async def stream_body_handler(response, form_data): | |
| nonlocal content | |
| nonlocal usage | |
| nonlocal output | |
| response_tool_calls = [] | |
| delta_count = 0 | |
| delta_chunk_size = max( | |
| CHAT_RESPONSE_STREAM_DELTA_CHUNK_SIZE, | |
| int( | |
| metadata.get("params", {}).get("stream_delta_chunk_size") | |
| or 1 | |
| ), | |
| ) | |
| last_delta_data = None | |
| async def flush_pending_delta_data(threshold: int = 0): | |
| nonlocal delta_count | |
| nonlocal last_delta_data | |
| if delta_count >= threshold and last_delta_data: | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": last_delta_data, | |
| } | |
| ) | |
| delta_count = 0 | |
| last_delta_data = None | |
| async for line in response.body_iterator: | |
| line = ( | |
| line.decode("utf-8", "replace") | |
| if isinstance(line, bytes) | |
| else line | |
| ) | |
| data = line | |
| # Skip empty lines | |
| if not data.strip(): | |
| continue | |
| # "data:" is the prefix for each event | |
| if not data.startswith("data:"): | |
| continue | |
| # Remove the prefix | |
| data = data[len("data:") :].strip() | |
| try: | |
| data = json.loads(data) | |
| data, _ = await process_filter_functions( | |
| request=request, | |
| filter_functions=filter_functions, | |
| filter_type="stream", | |
| form_data=data, | |
| extra_params={"__body__": form_data, **extra_params}, | |
| ) | |
| if data: | |
| if "event" in data and not getattr( | |
| request.state, "direct", False | |
| ): | |
| await event_emitter(data.get("event", {})) | |
| if "selected_model_id" in data: | |
| model_id = data["selected_model_id"] | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "selectedModelId": model_id, | |
| }, | |
| ) | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": data, | |
| } | |
| ) | |
| # Check for Responses API events (type field starts with "response.") | |
| elif data.get("type", "").startswith("response."): | |
| output, response_metadata = ( | |
| handle_responses_streaming_event(data, output) | |
| ) | |
| processed_data = { | |
| "output": output, | |
| "content": serialize_output(output), | |
| } | |
| # print(data) | |
| # print(processed_data) | |
| # Merge any metadata (usage, done, etc.) | |
| if response_metadata: | |
| processed_data.update(response_metadata) | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": processed_data, | |
| } | |
| ) | |
| continue | |
| else: | |
| choices = data.get("choices", []) | |
| # Normalize usage data to standard format | |
| raw_usage = data.get("usage", {}) or {} | |
| raw_usage.update( | |
| data.get("timings", {}) | |
| ) # llama.cpp | |
| if raw_usage: | |
| usage = normalize_usage(raw_usage) | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "usage": usage, | |
| }, | |
| } | |
| ) | |
| if not choices: | |
| error = data.get("error", {}) | |
| if error: | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "error": error, | |
| }, | |
| } | |
| ) | |
| continue | |
| delta = choices[0].get("delta", {}) | |
| # Handle delta annotations | |
| annotations = delta.get("annotations") | |
| if annotations: | |
| for annotation in annotations: | |
| if ( | |
| annotation.get("type") == "url_citation" | |
| and "url_citation" in annotation | |
| ): | |
| url_citation = annotation[ | |
| "url_citation" | |
| ] | |
| url = url_citation.get("url", "") | |
| title = url_citation.get("title", url) | |
| await event_emitter( | |
| { | |
| "type": "source", | |
| "data": { | |
| "source": { | |
| "name": title, | |
| "url": url, | |
| }, | |
| "document": [title], | |
| "metadata": [ | |
| { | |
| "source": url, | |
| "name": title, | |
| } | |
| ], | |
| }, | |
| } | |
| ) | |
| delta_tool_calls = delta.get("tool_calls", None) | |
| if delta_tool_calls: | |
| for delta_tool_call in delta_tool_calls: | |
| tool_call_index = delta_tool_call.get( | |
| "index" | |
| ) | |
| if tool_call_index is not None: | |
| # Check if the tool call already exists | |
| current_response_tool_call = None | |
| for ( | |
| response_tool_call | |
| ) in response_tool_calls: | |
| if ( | |
| response_tool_call.get("index") | |
| == tool_call_index | |
| ): | |
| current_response_tool_call = ( | |
| response_tool_call | |
| ) | |
| break | |
| if current_response_tool_call is None: | |
| # Add the new tool call | |
| delta_tool_call.setdefault( | |
| "function", {} | |
| ) | |
| delta_tool_call[ | |
| "function" | |
| ].setdefault("name", "") | |
| delta_tool_call[ | |
| "function" | |
| ].setdefault("arguments", "") | |
| response_tool_calls.append( | |
| delta_tool_call | |
| ) | |
| else: | |
| # Update the existing tool call | |
| delta_name = delta_tool_call.get( | |
| "function", {} | |
| ).get("name") | |
| delta_arguments = ( | |
| delta_tool_call.get( | |
| "function", {} | |
| ).get("arguments") | |
| ) | |
| if delta_name: | |
| current_response_tool_call[ | |
| "function" | |
| ]["name"] += delta_name | |
| if delta_arguments: | |
| current_response_tool_call[ | |
| "function" | |
| ][ | |
| "arguments" | |
| ] += delta_arguments | |
| # Emit pending tool calls in real-time | |
| if response_tool_calls: | |
| # Flush any pending text first | |
| await flush_pending_delta_data() | |
| # Build pending function_call output items for display | |
| pending_fc_items = [] | |
| for tc in response_tool_calls: | |
| call_id = tc.get("id", "") | |
| func = tc.get("function", {}) | |
| pending_fc_items.append( | |
| { | |
| "type": "function_call", | |
| "id": call_id | |
| or output_id("fc"), | |
| "call_id": call_id, | |
| "name": func.get("name", ""), | |
| "arguments": func.get( | |
| "arguments", "{}" | |
| ), | |
| "status": "in_progress", | |
| } | |
| ) | |
| pending_output = output + pending_fc_items | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "content": serialize_output( | |
| pending_output | |
| ), | |
| }, | |
| } | |
| ) | |
| image_urls = get_image_urls( | |
| delta.get("images", []), request, metadata, user | |
| ) | |
| if image_urls: | |
| message_files = Chats.add_message_files_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| [ | |
| {"type": "image", "url": url} | |
| for url in image_urls | |
| ], | |
| ) | |
| await event_emitter( | |
| { | |
| "type": "files", | |
| "data": {"files": message_files}, | |
| } | |
| ) | |
| value = delta.get("content") | |
| reasoning_content = ( | |
| delta.get("reasoning_content") | |
| or delta.get("reasoning") | |
| or delta.get("thinking") | |
| ) | |
| if reasoning_content: | |
| if ( | |
| not output | |
| or output[-1].get("type") != "reasoning" | |
| ): | |
| reasoning_item = { | |
| "type": "reasoning", | |
| "id": output_id("r"), | |
| "status": "in_progress", | |
| "start_tag": "<think>", | |
| "end_tag": "</think>", | |
| "attributes": { | |
| "type": "reasoning_content" | |
| }, | |
| "content": [], | |
| "summary": None, | |
| "started_at": time.time(), | |
| } | |
| output.append(reasoning_item) | |
| else: | |
| reasoning_item = output[-1] | |
| # Append to reasoning content | |
| parts = reasoning_item.get("content", []) | |
| if ( | |
| parts | |
| and parts[-1].get("type") == "output_text" | |
| ): | |
| parts[-1]["text"] += reasoning_content | |
| else: | |
| reasoning_item["content"] = [ | |
| { | |
| "type": "output_text", | |
| "text": reasoning_content, | |
| } | |
| ] | |
| data = {"content": serialize_output(output)} | |
| if value: | |
| if ( | |
| output | |
| and output[-1].get("type") == "reasoning" | |
| and output[-1] | |
| .get("attributes", {}) | |
| .get("type") | |
| == "reasoning_content" | |
| ): | |
| reasoning_item = output[-1] | |
| reasoning_item["ended_at"] = time.time() | |
| reasoning_item["duration"] = int( | |
| reasoning_item["ended_at"] | |
| - reasoning_item["started_at"] | |
| ) | |
| reasoning_item["status"] = "completed" | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| { | |
| "type": "output_text", | |
| "text": "", | |
| } | |
| ], | |
| } | |
| ) | |
| if ENABLE_CHAT_RESPONSE_BASE64_IMAGE_URL_CONVERSION: | |
| value = convert_markdown_base64_images( | |
| request, | |
| value, | |
| { | |
| "chat_id": metadata.get( | |
| "chat_id", None | |
| ), | |
| "message_id": metadata.get( | |
| "message_id", None | |
| ), | |
| }, | |
| user, | |
| ) | |
| content = f"{content}{value}" | |
| if ( | |
| not output | |
| or output[-1].get("type") != "message" | |
| ): | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| { | |
| "type": "output_text", | |
| "text": "", | |
| } | |
| ], | |
| } | |
| ) | |
| # Append value to last message item's text | |
| msg_parts = output[-1].get("content", []) | |
| if ( | |
| msg_parts | |
| and msg_parts[-1].get("type") | |
| == "output_text" | |
| ): | |
| msg_parts[-1]["text"] += value | |
| else: | |
| output[-1]["content"] = [ | |
| {"type": "output_text", "text": value} | |
| ] | |
| if DETECT_REASONING_TAGS: | |
| content, output, _ = tag_output_handler( | |
| "reasoning", | |
| reasoning_tags, | |
| content, | |
| output, | |
| ) | |
| content, output, _ = tag_output_handler( | |
| "solution", | |
| DEFAULT_SOLUTION_TAGS, | |
| content, | |
| output, | |
| ) | |
| if DETECT_CODE_INTERPRETER: | |
| content, output, end = tag_output_handler( | |
| "code_interpreter", | |
| DEFAULT_CODE_INTERPRETER_TAGS, | |
| content, | |
| output, | |
| ) | |
| if end: | |
| break | |
| if ENABLE_REALTIME_CHAT_SAVE: | |
| # Save message in the database | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "content": serialize_output(output), | |
| "output": output, | |
| }, | |
| ) | |
| else: | |
| data = { | |
| "content": serialize_output(output), | |
| } | |
| if delta: | |
| delta_count += 1 | |
| last_delta_data = data | |
| if delta_count >= delta_chunk_size: | |
| await flush_pending_delta_data(delta_chunk_size) | |
| else: | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": data, | |
| } | |
| ) | |
| except Exception as e: | |
| done = "data: [DONE]" in line | |
| if done: | |
| pass | |
| else: | |
| log.debug(f"Error: {e}") | |
| continue | |
| await flush_pending_delta_data() | |
| if output: | |
| # Clean up the last message item | |
| if output[-1].get("type") == "message": | |
| parts = output[-1].get("content", []) | |
| if parts and parts[-1].get("type") == "output_text": | |
| parts[-1]["text"] = parts[-1]["text"].strip() | |
| if not parts[-1]["text"]: | |
| output.pop() | |
| if not output: | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [ | |
| {"type": "output_text", "text": ""} | |
| ], | |
| } | |
| ) | |
| if output[-1].get("type") == "reasoning": | |
| reasoning_item = output[-1] | |
| if reasoning_item.get("ended_at") is None: | |
| reasoning_item["ended_at"] = time.time() | |
| reasoning_item["duration"] = int( | |
| reasoning_item["ended_at"] | |
| - reasoning_item["started_at"] | |
| ) | |
| reasoning_item["status"] = "completed" | |
| if response_tool_calls: | |
| tool_calls.append(response_tool_calls) | |
| if response.background: | |
| await response.background() | |
| await stream_body_handler(response, form_data) | |
| tool_call_retries = 0 | |
| tool_call_sources = [] # Track citation sources from tool results | |
| while ( | |
| len(tool_calls) > 0 | |
| and tool_call_retries < CHAT_RESPONSE_MAX_TOOL_CALL_RETRIES | |
| ): | |
| tool_call_retries += 1 | |
| response_tool_calls = tool_calls.pop(0) | |
| # Append function_call items for each tool call | |
| for tc in response_tool_calls: | |
| call_id = tc.get("id", "") | |
| func = tc.get("function", {}) | |
| output.append( | |
| { | |
| "type": "function_call", | |
| "id": call_id or output_id("fc"), | |
| "call_id": call_id, | |
| "name": func.get("name", ""), | |
| "arguments": func.get("arguments", "{}"), | |
| "status": "in_progress", | |
| } | |
| ) | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "content": serialize_output(output), | |
| "output": output, | |
| }, | |
| } | |
| ) | |
| tools = metadata.get("tools", {}) | |
| results = [] | |
| for tool_call in response_tool_calls: | |
| tool_call_id = tool_call.get("id", "") | |
| tool_function_name = tool_call.get("function", {}).get( | |
| "name", "" | |
| ) | |
| tool_args = tool_call.get("function", {}).get("arguments", "{}") | |
| tool_function_params = {} | |
| try: | |
| # json.loads cannot be used because some models do not produce valid JSON | |
| tool_function_params = ast.literal_eval(tool_args) | |
| except Exception as e: | |
| log.debug(e) | |
| # Fallback to JSON parsing | |
| try: | |
| tool_function_params = json.loads(tool_args) | |
| except Exception as e: | |
| log.error( | |
| f"Error parsing tool call arguments: {tool_args}" | |
| ) | |
| # Ensure arguments are valid JSON for downstream LLM integrations | |
| log.debug( | |
| f"Parsed args from {tool_args} to {tool_function_params}" | |
| ) | |
| tool_call.setdefault("function", {})["arguments"] = json.dumps( | |
| tool_function_params | |
| ) | |
| tool_result = None | |
| tool = None | |
| tool_type = None | |
| direct_tool = False | |
| if tool_function_name in tools: | |
| tool = tools[tool_function_name] | |
| spec = tool.get("spec", {}) | |
| tool_type = tool.get("type", "") | |
| direct_tool = tool.get("direct", False) | |
| try: | |
| allowed_params = ( | |
| spec.get("parameters", {}) | |
| .get("properties", {}) | |
| .keys() | |
| ) | |
| tool_function_params = { | |
| k: v | |
| for k, v in tool_function_params.items() | |
| if k in allowed_params | |
| } | |
| if direct_tool: | |
| tool_result = await event_caller( | |
| { | |
| "type": "execute:tool", | |
| "data": { | |
| "id": str(uuid4()), | |
| "name": tool_function_name, | |
| "params": tool_function_params, | |
| "server": tool.get("server", {}), | |
| "session_id": metadata.get( | |
| "session_id", None | |
| ), | |
| }, | |
| } | |
| ) | |
| else: | |
| tool_function = get_updated_tool_function( | |
| function=tool["callable"], | |
| extra_params={ | |
| "__messages__": form_data.get( | |
| "messages", [] | |
| ), | |
| "__files__": metadata.get("files", []), | |
| }, | |
| ) | |
| tool_result = await tool_function( | |
| **tool_function_params | |
| ) | |
| except Exception as e: | |
| tool_result = str(e) | |
| tool_result, tool_result_files, tool_result_embeds = ( | |
| process_tool_result( | |
| request, | |
| tool_function_name, | |
| tool_result, | |
| tool_type, | |
| direct_tool, | |
| metadata, | |
| user, | |
| ) | |
| ) | |
| # Extract citation sources from tool results | |
| if ( | |
| tool_function_name | |
| in [ | |
| "search_web", | |
| "view_knowledge_file", | |
| "query_knowledge_files", | |
| ] | |
| and tool_result | |
| ): | |
| try: | |
| citation_sources = get_citation_source_from_tool_result( | |
| tool_name=tool_function_name, | |
| tool_params=tool_function_params, | |
| tool_result=tool_result, | |
| tool_id=tool.get("tool_id", "") if tool else "", | |
| ) | |
| tool_call_sources.extend(citation_sources) | |
| except Exception as e: | |
| log.exception(f"Error extracting citation source: {e}") | |
| results.append( | |
| { | |
| "tool_call_id": tool_call_id, | |
| "content": tool_result or "", | |
| **( | |
| {"files": tool_result_files} | |
| if tool_result_files | |
| else {} | |
| ), | |
| **( | |
| {"embeds": tool_result_embeds} | |
| if tool_result_embeds | |
| else {} | |
| ), | |
| } | |
| ) | |
| # Update function_call statuses and append function_call_output items | |
| for tc in response_tool_calls: | |
| call_id = tc.get("id", "") | |
| # Mark function_call as completed | |
| for item in output: | |
| if ( | |
| item.get("type") == "function_call" | |
| and item.get("call_id") == call_id | |
| ): | |
| item["status"] = "completed" | |
| # Update arguments with parsed/sanitized version | |
| item["arguments"] = tc.get("function", {}).get( | |
| "arguments", "{}" | |
| ) | |
| break | |
| for result in results: | |
| output.append( | |
| { | |
| "type": "function_call_output", | |
| "id": output_id("fco"), | |
| "call_id": result.get("tool_call_id", ""), | |
| "output": [ | |
| { | |
| "type": "input_text", | |
| "text": result.get("content", ""), | |
| } | |
| ], | |
| "status": "completed", | |
| **( | |
| {"files": result.get("files")} | |
| if result.get("files") | |
| else {} | |
| ), | |
| **( | |
| {"embeds": result.get("embeds")} | |
| if result.get("embeds") | |
| else {} | |
| ), | |
| } | |
| ) | |
| # Append a new empty message item for the next response | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [{"type": "output_text", "text": ""}], | |
| } | |
| ) | |
| # Emit citation sources for UI display | |
| for source in tool_call_sources: | |
| await event_emitter({"type": "source", "data": source}) | |
| # Apply source context to messages for model | |
| if tool_call_sources: | |
| user_msg = get_last_user_message(form_data["messages"]) | |
| if user_msg: | |
| form_data["messages"] = apply_source_context_to_messages( | |
| request, | |
| form_data["messages"], | |
| tool_call_sources, | |
| user_msg, | |
| ) | |
| tool_call_sources.clear() | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "content": serialize_output(output), | |
| "output": output, | |
| }, | |
| } | |
| ) | |
| try: | |
| new_form_data = { | |
| **form_data, | |
| "model": model_id, | |
| "stream": True, | |
| "messages": [ | |
| *form_data["messages"], | |
| *convert_output_to_messages(output, raw=True), | |
| ], | |
| } | |
| res = await generate_chat_completion( | |
| request, | |
| new_form_data, | |
| user, | |
| bypass_system_prompt=True, | |
| ) | |
| if isinstance(res, StreamingResponse): | |
| await stream_body_handler(res, new_form_data) | |
| else: | |
| break | |
| except Exception as e: | |
| log.debug(e) | |
| break | |
| if DETECT_CODE_INTERPRETER: | |
| MAX_RETRIES = 5 | |
| retries = 0 | |
| while ( | |
| output | |
| and output[-1].get("type") == "open_webui:code_interpreter" | |
| and retries < MAX_RETRIES | |
| ): | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "content": serialize_output(output), | |
| "output": output, | |
| }, | |
| } | |
| ) | |
| retries += 1 | |
| log.debug(f"Attempt count: {retries}") | |
| ci_item = output[-1] | |
| ci_output = "" | |
| try: | |
| if ci_item.get("attributes", {}).get("type") == "code": | |
| code = ci_item.get("code", "") | |
| # Sanitize code (strips ANSI codes and markdown fences) | |
| code = sanitize_code(code) | |
| if CODE_INTERPRETER_BLOCKED_MODULES: | |
| blocking_code = textwrap.dedent(f""" | |
| import builtins | |
| BLOCKED_MODULES = {CODE_INTERPRETER_BLOCKED_MODULES} | |
| _real_import = builtins.__import__ | |
| def restricted_import(name, globals=None, locals=None, fromlist=(), level=0): | |
| if name.split('.')[0] in BLOCKED_MODULES: | |
| importer_name = globals.get('__name__') if globals else None | |
| if importer_name == '__main__': | |
| raise ImportError( | |
| f"Direct import of module {{name}} is restricted." | |
| ) | |
| return _real_import(name, globals, locals, fromlist, level) | |
| builtins.__import__ = restricted_import | |
| """) | |
| code = blocking_code + "\n" + code | |
| if ( | |
| request.app.state.config.CODE_INTERPRETER_ENGINE | |
| == "pyodide" | |
| ): | |
| ci_output = await event_caller( | |
| { | |
| "type": "execute:python", | |
| "data": { | |
| "id": str(uuid4()), | |
| "code": code, | |
| "session_id": metadata.get( | |
| "session_id", None | |
| ), | |
| }, | |
| } | |
| ) | |
| elif ( | |
| request.app.state.config.CODE_INTERPRETER_ENGINE | |
| == "jupyter" | |
| ): | |
| ci_output = await execute_code_jupyter( | |
| request.app.state.config.CODE_INTERPRETER_JUPYTER_URL, | |
| code, | |
| ( | |
| request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH_TOKEN | |
| if request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH | |
| == "token" | |
| else None | |
| ), | |
| ( | |
| request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH_PASSWORD | |
| if request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH | |
| == "password" | |
| else None | |
| ), | |
| request.app.state.config.CODE_INTERPRETER_JUPYTER_TIMEOUT, | |
| ) | |
| else: | |
| ci_output = { | |
| "stdout": "Code interpreter engine not configured." | |
| } | |
| log.debug(f"Code interpreter output: {ci_output}") | |
| if isinstance(ci_output, dict): | |
| stdout = ci_output.get("stdout", "") | |
| if isinstance(stdout, str): | |
| stdoutLines = stdout.split("\n") | |
| for idx, line in enumerate(stdoutLines): | |
| if "data:image/png;base64" in line: | |
| image_url = get_image_url_from_base64( | |
| request, | |
| line, | |
| metadata, | |
| user, | |
| ) | |
| if image_url: | |
| stdoutLines[idx] = ( | |
| f"" | |
| ) | |
| ci_output["stdout"] = "\n".join(stdoutLines) | |
| result = ci_output.get("result", "") | |
| if isinstance(result, str): | |
| resultLines = result.split("\n") | |
| for idx, line in enumerate(resultLines): | |
| if "data:image/png;base64" in line: | |
| image_url = get_image_url_from_base64( | |
| request, | |
| line, | |
| metadata, | |
| user, | |
| ) | |
| resultLines[idx] = ( | |
| f"" | |
| ) | |
| ci_output["result"] = "\n".join(resultLines) | |
| except Exception as e: | |
| ci_output = str(e) | |
| ci_item["output"] = ci_output | |
| ci_item["status"] = "completed" | |
| output.append( | |
| { | |
| "type": "message", | |
| "id": output_id("msg"), | |
| "status": "in_progress", | |
| "role": "assistant", | |
| "content": [{"type": "output_text", "text": ""}], | |
| } | |
| ) | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": { | |
| "content": serialize_output(output), | |
| "output": output, | |
| }, | |
| } | |
| ) | |
| try: | |
| new_form_data = { | |
| **form_data, | |
| "model": model_id, | |
| "stream": True, | |
| "messages": [ | |
| *form_data["messages"], | |
| *convert_output_to_messages(output, raw=True), | |
| ], | |
| } | |
| res = await generate_chat_completion( | |
| request, | |
| new_form_data, | |
| user, | |
| bypass_system_prompt=True, | |
| ) | |
| if isinstance(res, StreamingResponse): | |
| await stream_body_handler(res, new_form_data) | |
| else: | |
| break | |
| except Exception as e: | |
| log.debug(e) | |
| break | |
| # Mark all in-progress items as completed | |
| for item in output: | |
| if item.get("status") == "in_progress": | |
| item["status"] = "completed" | |
| title = Chats.get_chat_title_by_id(metadata["chat_id"]) | |
| data = { | |
| "done": True, | |
| "content": serialize_output(output), | |
| "output": output, | |
| "title": title, | |
| } | |
| if not ENABLE_REALTIME_CHAT_SAVE: | |
| # Save message in the database | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "content": serialize_output(output), | |
| "output": output, | |
| **({"usage": usage} if usage else {}), | |
| }, | |
| ) | |
| elif usage: | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| {"usage": usage}, | |
| ) | |
| # Send a webhook notification if the user is not active | |
| if not Users.is_user_active(user.id): | |
| webhook_url = Users.get_user_webhook_url_by_id(user.id) | |
| if webhook_url: | |
| await post_webhook( | |
| request.app.state.WEBUI_NAME, | |
| webhook_url, | |
| f"{title} - {request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}\n\n{content}", | |
| { | |
| "action": "chat", | |
| "message": content, | |
| "title": title, | |
| "url": f"{request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}", | |
| }, | |
| ) | |
| await event_emitter( | |
| { | |
| "type": "chat:completion", | |
| "data": data, | |
| } | |
| ) | |
| await background_tasks_handler(ctx) | |
| except asyncio.CancelledError: | |
| log.warning("Task was cancelled!") | |
| await event_emitter({"type": "chat:tasks:cancel"}) | |
| if not ENABLE_REALTIME_CHAT_SAVE: | |
| # Save message in the database | |
| Chats.upsert_message_to_chat_by_id_and_message_id( | |
| metadata["chat_id"], | |
| metadata["message_id"], | |
| { | |
| "content": serialize_output(output), | |
| "output": output, | |
| }, | |
| ) | |
| if response.background is not None: | |
| await response.background() | |
| return await response_handler(response, events) | |
| else: | |
| # Fallback to the original response | |
| async def stream_wrapper(original_generator, events): | |
| def wrap_item(item): | |
| return f"data: {item}\n\n" | |
| for event in events: | |
| event, _ = await process_filter_functions( | |
| request=request, | |
| filter_functions=filter_functions, | |
| filter_type="stream", | |
| form_data=event, | |
| extra_params=extra_params, | |
| ) | |
| if event: | |
| yield wrap_item(json.dumps(event)) | |
| async for data in original_generator: | |
| data, _ = await process_filter_functions( | |
| request=request, | |
| filter_functions=filter_functions, | |
| filter_type="stream", | |
| form_data=data, | |
| extra_params=extra_params, | |
| ) | |
| if data: | |
| yield data | |
| return StreamingResponse( | |
| stream_wrapper(response.body_iterator, events), | |
| headers=dict(response.headers), | |
| background=response.background, | |
| ) | |
| async def process_chat_response(response, ctx): | |
| # Non-streaming response | |
| if not isinstance(response, StreamingResponse): | |
| return await non_streaming_chat_response_handler(response, ctx) | |
| # Non standard response | |
| if not any( | |
| content_type in response.headers["Content-Type"] | |
| for content_type in ["text/event-stream", "application/x-ndjson"] | |
| ): | |
| return response | |
| # Streaming response | |
| return await streaming_chat_response_handler(response, ctx) | |