github-actions[bot]
GitHub deploy: 4d024c91d61f15a8b39171610ab1406915ef598d
d6703a1
import json
from uuid import uuid4
from open_webui.utils.misc import (
openai_chat_chunk_message_template,
openai_chat_completion_message_template,
)
def normalize_usage(usage: dict) -> dict:
"""
Normalize usage statistics to standard format.
Handles OpenAI, Ollama, and llama.cpp formats.
Adds standardized token fields to the original data:
- input_tokens: Number of tokens in the prompt
- output_tokens: Number of tokens generated
- total_tokens: Sum of input and output tokens
"""
if not usage:
return {}
# Map various field names to standard names
input_tokens = (
usage.get("input_tokens") # Already standard
or usage.get("prompt_tokens") # OpenAI
or usage.get("prompt_eval_count") # Ollama
or usage.get("prompt_n") # llama.cpp
or 0
)
output_tokens = (
usage.get("output_tokens") # Already standard
or usage.get("completion_tokens") # OpenAI
or usage.get("eval_count") # Ollama
or usage.get("predicted_n") # llama.cpp
or 0
)
total_tokens = usage.get("total_tokens") or (input_tokens + output_tokens)
# Add standardized fields to original data
result = dict(usage)
result["input_tokens"] = int(input_tokens)
result["output_tokens"] = int(output_tokens)
result["total_tokens"] = int(total_tokens)
return result
def convert_ollama_tool_call_to_openai(tool_calls: list) -> list:
openai_tool_calls = []
for tool_call in tool_calls:
function = tool_call.get("function", {})
openai_tool_call = {
"index": tool_call.get("index", function.get("index", 0)),
"id": tool_call.get("id", f"call_{str(uuid4())}"),
"type": "function",
"function": {
"name": function.get("name", ""),
"arguments": json.dumps(function.get("arguments", {})),
},
}
openai_tool_calls.append(openai_tool_call)
return openai_tool_calls
def convert_ollama_usage_to_openai(data: dict) -> dict:
input_tokens = int(data.get("prompt_eval_count", 0))
output_tokens = int(data.get("eval_count", 0))
total_tokens = input_tokens + output_tokens
return {
# Standardized fields
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"total_tokens": total_tokens,
# OpenAI-compatible fields (for backward compatibility)
"prompt_tokens": input_tokens,
"completion_tokens": output_tokens,
# Ollama-specific metrics
"response_token/s": (
round(
(
(
data.get("eval_count", 0)
/ ((data.get("eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("eval_duration", 0) > 0
else "N/A"
),
"prompt_token/s": (
round(
(
(
data.get("prompt_eval_count", 0)
/ ((data.get("prompt_eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("prompt_eval_duration", 0) > 0
else "N/A"
),
"total_duration": data.get("total_duration", 0),
"load_duration": data.get("load_duration", 0),
"prompt_eval_count": data.get("prompt_eval_count", 0),
"prompt_eval_duration": data.get("prompt_eval_duration", 0),
"eval_count": data.get("eval_count", 0),
"eval_duration": data.get("eval_duration", 0),
"approximate_total": (lambda s: f"{s // 3600}h{(s % 3600) // 60}m{s % 60}s")(
(data.get("total_duration", 0) or 0) // 1_000_000_000
),
"completion_tokens_details": {
"reasoning_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0,
},
}
def convert_response_ollama_to_openai(ollama_response: dict) -> dict:
model = ollama_response.get("model", "ollama")
message_content = ollama_response.get("message", {}).get("content", "")
reasoning_content = ollama_response.get("message", {}).get("thinking", None)
tool_calls = ollama_response.get("message", {}).get("tool_calls", None)
openai_tool_calls = None
if tool_calls:
openai_tool_calls = convert_ollama_tool_call_to_openai(tool_calls)
data = ollama_response
usage = convert_ollama_usage_to_openai(data)
response = openai_chat_completion_message_template(
model, message_content, reasoning_content, openai_tool_calls, usage
)
return response
async def convert_streaming_response_ollama_to_openai(ollama_streaming_response):
async for data in ollama_streaming_response.body_iterator:
data = json.loads(data)
model = data.get("model", "ollama")
message_content = data.get("message", {}).get("content", None)
reasoning_content = data.get("message", {}).get("thinking", None)
tool_calls = data.get("message", {}).get("tool_calls", None)
openai_tool_calls = None
if tool_calls:
openai_tool_calls = convert_ollama_tool_call_to_openai(tool_calls)
done = data.get("done", False)
usage = None
if done:
usage = convert_ollama_usage_to_openai(data)
data = openai_chat_chunk_message_template(
model, message_content, reasoning_content, openai_tool_calls, usage
)
line = f"data: {json.dumps(data)}\n\n"
yield line
yield "data: [DONE]\n\n"
def convert_embedding_response_ollama_to_openai(response) -> dict:
"""
Convert the response from Ollama embeddings endpoint to the OpenAI-compatible format.
Args:
response (dict): The response from the Ollama API,
e.g. {"embedding": [...], "model": "..."}
or {"embeddings": [{"embedding": [...], "index": 0}, ...], "model": "..."}
Returns:
dict: Response adapted to OpenAI's embeddings API format.
e.g. {
"object": "list",
"data": [
{"object": "embedding", "embedding": [...], "index": 0},
...
],
"model": "...",
}
"""
# Ollama batch-style output from /api/embed
# Response format: {"embeddings": [[0.1, 0.2, ...], [0.3, 0.4, ...]], "model": "..."}
if isinstance(response, dict) and "embeddings" in response:
openai_data = []
for i, emb in enumerate(response["embeddings"]):
# /api/embed returns embeddings as plain float lists
if isinstance(emb, list):
openai_data.append(
{
"object": "embedding",
"embedding": emb,
"index": i,
}
)
# Also handle dict format for robustness
elif isinstance(emb, dict):
openai_data.append(
{
"object": "embedding",
"embedding": emb.get("embedding"),
"index": emb.get("index", i),
}
)
return {
"object": "list",
"data": openai_data,
"model": response.get("model"),
}
# Ollama single output
elif isinstance(response, dict) and "embedding" in response:
return {
"object": "list",
"data": [
{
"object": "embedding",
"embedding": response["embedding"],
"index": 0,
}
],
"model": response.get("model"),
}
# Already OpenAI-compatible?
elif (
isinstance(response, dict)
and "data" in response
and isinstance(response["data"], list)
):
return response
# Fallback: return as is if unrecognized
return response