File size: 17,587 Bytes
0cd6025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import warnings
warnings.filterwarnings("ignore")
import os
import torch
import torchaudio
import numpy as np
from moviepy import *
from PIL import Image, ImageDraw
import face_alignment
import cv2

from look2hear.models import Dolphin
from look2hear.datas.transform import get_preprocessing_pipelines

from face_detection_utils import detect_faces

# Import functions from original Inference.py
from Inference import (
    linear_interpolate, warp_img, apply_transform, cut_patch, convert_bgr2gray,
    save2npz, read_video, face2head, bb_intersection_over_union, 
    landmarks_interpolate, crop_patch, convert_video_fps, extract_audio, merge_video_audio
)

def detectface_with_status(video_input_path, output_path, detect_every_N_frame, scalar_face_detection, number_of_speakers, status_callback=None):
    """Face detection with status updates"""
    device = torch.device('cuda' if torch.cuda.get_device_name() else 'cpu')
    if status_callback:
        status_callback({'status': f'Running on device: {device}', 'progress': 0.0})
    
    os.makedirs(os.path.join(output_path, 'faces'), exist_ok=True)
    os.makedirs(os.path.join(output_path, 'landmark'), exist_ok=True)

    landmarks_dic = {}
    faces_dic = {}
    boxes_dic = {}
    
    for i in range(number_of_speakers):
        landmarks_dic[i] = []
        faces_dic[i] = []
        boxes_dic[i] = []

    video_clip = VideoFileClip(video_input_path)
    if status_callback:
        status_callback({'status': f"Video: {video_clip.w}x{video_clip.h}, {video_clip.fps}fps", 'progress': 0.05})
    
    frames = [Image.fromarray(frame) for frame in video_clip.iter_frames()]
    total_frames = len(frames)
    if status_callback:
        status_callback({'status': f'Processing {total_frames} frames', 'progress': 0.1})
    
    video_clip.close()
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
    
    for i, frame in enumerate(frames):
        if status_callback and i % 10 == 0:
            status_callback({'status': f'Tracking frame: {i+1}/{total_frames}', 'progress': 0.1 + 0.3 * (i / total_frames)})
        
        # Detect faces every N frames
        if i % detect_every_N_frame == 0:
            frame_array = np.array(frame)

            detected_boxes, _ = detect_faces(
                frame_array,
                threshold=0.9,
                allow_upscaling=False,
            )

            if detected_boxes is None or len(detected_boxes) == 0:
                detected_boxes, _ = detect_faces(
                    frame_array,
                    threshold=0.7,
                    allow_upscaling=True,
                )

            if detected_boxes is not None and len(detected_boxes) > 0:
                detected_boxes = np.asarray(detected_boxes, dtype=np.float32)
                areas = (detected_boxes[:, 2] - detected_boxes[:, 0]) * (detected_boxes[:, 3] - detected_boxes[:, 1])
                sort_idx = np.argsort(areas)[::-1]
                detected_boxes = detected_boxes[sort_idx][:number_of_speakers]
                detected_boxes = face2head(detected_boxes, scalar_face_detection)
                detected_boxes = [box for box in detected_boxes]
            else:
                detected_boxes = []

        # Process the detection results (same as original)
        if i == 0:
            # First frame - initialize tracking
            if len(detected_boxes) < number_of_speakers:
                raise ValueError(f"First frame must detect at least {number_of_speakers} faces, but only found {len(detected_boxes)}")
            
            # Assign first detections to speakers in order
            for j in range(number_of_speakers):
                box = detected_boxes[j]
                face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224))
                preds = fa.get_landmarks(np.array(face))
                
                if preds is None:
                    raise ValueError(f"Face landmarks not detected in initial frame for speaker {j}")
                
                faces_dic[j].append(face)
                landmarks_dic[j].append(preds)
                boxes_dic[j].append(box)
        else:
            # For subsequent frames, match detected boxes to speakers
            matched_speakers = set()
            speaker_boxes = [None] * number_of_speakers
            
            # Match each detected box to the most likely speaker
            for box in detected_boxes:
                iou_scores = []
                for speaker_id in range(number_of_speakers):
                    if speaker_id in matched_speakers:
                        iou_scores.append(-1)  # Already matched
                    else:
                        last_box = boxes_dic[speaker_id][-1]
                        iou_score = bb_intersection_over_union(box, last_box)
                        iou_scores.append(iou_score)
                
                if max(iou_scores) > 0:  # Valid match found
                    best_speaker = iou_scores.index(max(iou_scores))
                    speaker_boxes[best_speaker] = box
                    matched_speakers.add(best_speaker)
            
            # Process each speaker
            for speaker_id in range(number_of_speakers):
                if speaker_boxes[speaker_id] is not None:
                    # Use detected box
                    box = speaker_boxes[speaker_id]
                else:
                    # Use previous box for this speaker
                    box = boxes_dic[speaker_id][-1]
                
                # Extract face and landmarks
                face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224))
                preds = fa.get_landmarks(np.array(face))
                
                if preds is None:
                    # Use previous landmarks if detection fails
                    preds = landmarks_dic[speaker_id][-1]
                
                faces_dic[speaker_id].append(face)
                landmarks_dic[speaker_id].append(preds)
                boxes_dic[speaker_id].append(box)
    
    # Verify all speakers have same number of frames
    frame_counts = [len(boxes_dic[s]) for s in range(number_of_speakers)]
    if status_callback:
        status_callback({'status': f"Frame counts per speaker: {frame_counts}", 'progress': 0.4})
    
    assert all(count == len(frames) for count in frame_counts), f"Inconsistent frame counts: {frame_counts}"
    
    # Continue with saving videos and landmarks...
    for s in range(number_of_speakers):
        if status_callback:
            status_callback({'status': f'Saving tracked video for speaker {s+1}', 'progress': 0.4 + 0.1 * (s / number_of_speakers)})
        
        frames_tracked = []
        for i, frame in enumerate(frames):
            frame_draw = frame.copy()
            draw = ImageDraw.Draw(frame_draw)
            draw.rectangle(boxes_dic[s][i], outline=(255, 0, 0), width=6) 
            frames_tracked.append(frame_draw)
            
        # Save tracked video
        tracked_frames = [np.array(frame) for frame in frames_tracked]
        if tracked_frames:
            tracked_clip = ImageSequenceClip(tracked_frames, fps=25.0)
            tracked_video_path = os.path.join(output_path, 'video_tracked' + str(s+1) + '.mp4')
            tracked_clip.write_videofile(tracked_video_path, codec='libx264', audio=False, logger=None)
            tracked_clip.close()

    # Save landmarks
    for i in range(number_of_speakers):
        # Create landmark directory if it doesn't exist
        landmark_dir = os.path.join(output_path, 'landmark')
        os.makedirs(landmark_dir, exist_ok=True)
        save2npz(os.path.join(landmark_dir, 'speaker' + str(i+1)+'.npz'), data=landmarks_dic[i])
        
        # Save face video
        face_frames = [np.array(frame) for frame in faces_dic[i]]
        if face_frames:
            face_clip = ImageSequenceClip(face_frames, fps=25.0)
            face_video_path = os.path.join(output_path, 'faces', 'speaker' + str(i+1) + '.mp4')
            face_clip.write_videofile(face_video_path, codec='libx264', audio=False, logger=None)
            face_clip.close()

    # Output video path
    parts = video_input_path.split('/')
    video_name = parts[-1][:-4]
    filename_dir = os.path.join(output_path, 'filename_input')
    os.makedirs(filename_dir, exist_ok=True)
    csvfile = open(os.path.join(filename_dir, str(video_name) + '.csv'), 'w')
    for i in range(number_of_speakers):
        csvfile.write('speaker' + str(i+1)+ ',0\n')
    csvfile.close()
    return os.path.join(filename_dir, str(video_name) + '.csv')


def crop_mouth_with_status(video_direc, landmark_direc, filename_path, save_direc, status_callback=None, convert_gray=False, testset_only=False):
    """Crop mouth with status updates"""
    lines = open(filename_path).read().splitlines()
    lines = list(filter(lambda x: 'test' in x, lines)) if testset_only else lines

    for filename_idx, line in enumerate(lines):
        filename, person_id = line.split(',')
        
        if status_callback:
            status_callback({'status': f'Processing speaker{int(person_id)+1}', 'progress': 0.5 + 0.1 * filename_idx / len(lines)})

        video_pathname = os.path.join(video_direc, filename+'.mp4')
        landmarks_pathname = os.path.join(landmark_direc, filename+'.npz')
        
        # Create mouthroi directory if it doesn't exist
        os.makedirs(save_direc, exist_ok=True)
        dst_pathname = os.path.join(save_direc, filename+'.npz')

        multi_sub_landmarks = np.load(landmarks_pathname, allow_pickle=True)['data']
        if len(multi_sub_landmarks) == 0:
            print(f"No landmarks found for {filename}, skipping crop.")
            continue

        landmark_frame_count = len(multi_sub_landmarks)
        cap = cv2.VideoCapture(video_pathname)
        frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0)
        cap.release()

        if frame_count > 0 and frame_count != landmark_frame_count:
            print(
                f"Frame count mismatch for {filename}: video has {frame_count} frames, "
                f"landmarks have {landmark_frame_count} entries. Adjusting to match."
            )
            if frame_count < landmark_frame_count:
                multi_sub_landmarks = multi_sub_landmarks[:frame_count]
            else:
                pad_count = frame_count - landmark_frame_count
                pad = np.repeat(multi_sub_landmarks[-1:], pad_count, axis=0)
                multi_sub_landmarks = np.concatenate((multi_sub_landmarks, pad), axis=0)

        landmarks = [None] * len(multi_sub_landmarks)
        for frame_idx in range(len(landmarks)):
            try:
                landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)]
            except (IndexError, TypeError):
                continue

        # Pre-process landmarks: interpolate frames not being detected
        preprocessed_landmarks = landmarks_interpolate(landmarks)
        if not preprocessed_landmarks:
            continue

        # Crop
        mean_face_landmarks = np.load('assets/20words_mean_face.npy')
        sequence = crop_patch(mean_face_landmarks, video_pathname, preprocessed_landmarks, 12, 48, 68, 96, 96)
        assert sequence is not None, "cannot crop from {}.".format(filename)

        # Save
        data = convert_bgr2gray(sequence) if convert_gray else sequence[...,::-1]
        save2npz(dst_pathname, data=data)


def process_video_with_status(input_file, output_path, number_of_speakers=2, 
                             detect_every_N_frame=8, scalar_face_detection=1.5,
                             config_path="checkpoints/vox2/conf.yml",
                             cuda_device=None, status_callback=None):
    """Main processing function with status updates"""
    
    # Set CUDA device if specified
    if cuda_device is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda_device)
    
    # Create output directory
    os.makedirs(output_path, exist_ok=True)
    
    # Convert video to 25fps
    if status_callback:
        status_callback({'status': 'Converting video to 25fps', 'progress': 0.0})
    
    temp_25fps_file = os.path.join(output_path, 'temp_25fps.mp4')
    convert_video_fps(input_file, temp_25fps_file, target_fps=25)
    
    # Detect faces
    if status_callback:
        status_callback({'status': 'Detecting faces and tracking speakers', 'progress': 0.1})
    
    filename_path = detectface_with_status(
        video_input_path=temp_25fps_file, 
        output_path=output_path, 
        detect_every_N_frame=detect_every_N_frame, 
        scalar_face_detection=scalar_face_detection, 
        number_of_speakers=number_of_speakers,
        status_callback=status_callback
    )
    torch.cuda.empty_cache()
    # Extract audio
    if status_callback:
        status_callback({'status': 'Extracting audio from video', 'progress': 0.5})
    
    audio_output = os.path.join(output_path, 'audio.wav')
    extract_audio(temp_25fps_file, audio_output, sample_rate=16000)
    
    # Crop mouth
    if status_callback:
        status_callback({'status': 'Cropping mouth regions', 'progress': 0.55})
    
    crop_mouth_with_status(
        video_direc=os.path.join(output_path, "faces"), 
        landmark_direc=os.path.join(output_path, "landmark"), 
        filename_path=filename_path, 
        save_direc=os.path.join(output_path, "mouthroi"), 
        convert_gray=True, 
        testset_only=False,
        status_callback=status_callback
    )
    
    # Load model
    if status_callback:
        status_callback({'status': 'Loading Dolphin model', 'progress': 0.6})
    torch.cuda.empty_cache()
    audiomodel = Dolphin.from_pretrained("JusperLee/Dolphin")
    # audiomodel.cuda()
    audiomodel.eval()
    
    # Process each speaker
    with torch.no_grad():
        for i in range(number_of_speakers):
            if status_callback:
                status_callback({'status': f'Processing audio for speaker {i+1}', 'progress': 0.65 + 0.25 * (i / number_of_speakers)})
            
            mouth_roi_path = os.path.join(output_path, "mouthroi", f"speaker{i+1}.npz")
            mouth_roi = np.load(mouth_roi_path)["data"]
            mouth_roi = get_preprocessing_pipelines()["val"](mouth_roi)
            
            mix, sr = torchaudio.load(audio_output)
            mix = mix.mean(dim=0)
            
            window_size = 4 * sr 
            hop_size = int(4 * sr)
            
            all_estimates = []
            
            # Sliding window processing
            start_idx = 0
            window_count = 0
            while start_idx < len(mix):
                end_idx = min(start_idx + window_size, len(mix))
                window_mix = mix[start_idx:end_idx]
                
                start_frame = int(start_idx / sr * 25)
                end_frame = int(end_idx / sr * 25)
                end_frame = min(end_frame, len(mouth_roi))
                window_mouth_roi = mouth_roi[start_frame:end_frame]
                
                est_sources = audiomodel(window_mix[None], 
                                    torch.from_numpy(window_mouth_roi[None, None]).float())
                
                all_estimates.append({
                    'start': start_idx,
                    'end': end_idx,
                    'estimate': est_sources[0].cpu()
                })
                
                window_count += 1
                if status_callback:
                    progress = 0.65 + 0.25 * (i / number_of_speakers) + 0.25 / number_of_speakers * (window_count * hop_size / len(mix))
                    status_callback({'status': f'Processing audio window {window_count} for speaker {i+1}', 'progress': min(progress, 0.9)})
                
                start_idx += hop_size
                
                if start_idx >= len(mix):
                    break
                torch.cuda.empty_cache()
            
            output_length = len(mix)
            merged_output = torch.zeros(1, output_length)
            weights = torch.zeros(output_length)
            
            for est in all_estimates:
                window_len = est['end'] - est['start']
                hann_window = torch.hann_window(window_len)
                
                merged_output[0, est['start']:est['end']] += est['estimate'][0, :window_len] * hann_window
                weights[est['start']:est['end']] += hann_window
            
            merged_output[:, weights > 0] /= weights[weights > 0]
            
            audio_save_path = os.path.join(output_path, f"speaker{i+1}_est.wav")
            torchaudio.save(audio_save_path, merged_output, sr)

    # Merge video with separated audio for each speaker
    torch.cuda.empty_cache()
    if status_callback:
        status_callback({'status': 'Merging videos with separated audio', 'progress': 0.9})
    
    output_files = []
    for i in range(number_of_speakers):
        video_input = os.path.join(output_path, f"video_tracked{i+1}.mp4")
        audio_input = os.path.join(output_path, f"speaker{i+1}_est.wav")
        video_output = os.path.join(output_path, f"s{i+1}.mp4")
        
        merge_video_audio(video_input, audio_input, video_output)
        output_files.append(video_output)
    
    # Clean up temporary file
    if os.path.exists(temp_25fps_file):
        os.remove(temp_25fps_file)
    
    if status_callback:
        status_callback({'status': 'Processing completed!', 'progress': 1.0})
    
    return output_files