Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,726 Bytes
e4c8837 58788ff e4c8837 373d67f e4c8837 58788ff 373d67f 58788ff 373d67f 58788ff e4c8837 373d67f e4c8837 ee7c477 e4c8837 ee7c477 373d67f e4c8837 ee7c477 e4c8837 d7e3d51 e4c8837 d7e3d51 e4c8837 d7e3d51 e4c8837 ee7c477 e4c8837 373d67f ee7c477 e4c8837 ee7c477 e4c8837 d7e3d51 e4c8837 373d67f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import io
import os
import subprocess
import sys
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import spaces
import torch
import torch.nn.functional as F
import torchvision.transforms as T
# Set environment variable for pip
env = os.environ.copy()
try:
import natten
except ImportError:
print("NATTEN not found. Installing NATTEN...")
print("Torch Version:", torch.__version__)
print("CUDA Version:", torch.version.cuda)
# Install NATTEN
subprocess.run(
"pip3 install natten==0.17.4+torch240cu121 -f https://shi-labs.com/natten/wheels/", shell=True, env=env, check=True
)
# Add project root to path
sys.path.append(str(Path(__file__).parent))
from src.backbone.vit_wrapper import PretrainedViTWrapper
from utils.training import round_to_nearest_multiple
from utils.visualization import plot_feats
# Load NAF model
device = "cuda" if torch.cuda.is_available() else "cpu"
model = torch.hub.load("valeoai/NAF", "naf", pretrained=True, device=device)
model.eval()
# Normalization for upsampling
ups_norm = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# Sample images
SAMPLE_IMAGES = [
"asset/Cartoon.png",
"asset/Natural.png",
"asset/Satellite.png",
"asset/Medical.png",
"asset/Ecosystems.png",
"asset/Driving.jpg",
"asset/Manufacturing.png",
]
def resize_with_aspect_ratio(img, max_size, patch_size):
"""Resize image maintaining aspect ratio with max dimension and patch size constraints"""
w, h = img.size
# Calculate scaling factor to fit within max_size
scale = min(max_size / w, max_size / h)
new_w = int(w * scale)
new_h = int(h * scale)
# Round to nearest patch size multiple
new_w = round_to_nearest_multiple(new_w, patch_size)
new_h = round_to_nearest_multiple(new_h, patch_size)
# Ensure minimum size
new_w = max(new_w, patch_size)
new_h = max(new_h, patch_size)
return new_w, new_h
@spaces.GPU
@torch.no_grad()
def process_image(image, model_selection, custom_model, output_resolution):
"""Process image with selected model and resolution"""
try:
# Determine which model to use
if custom_model.strip():
model_name = custom_model.strip()
else:
model_name = MODEL_MAPPING.get(model_selection, model_selection)
# Load the backbone using vit_wrapper
backbone = PretrainedViTWrapper(model_name, norm=True).to(device)
backbone.eval()
# Get model config for normalization and input size
mean = backbone.config["mean"]
std = backbone.config["std"]
patch_size = backbone.patch_size
back_norm = T.Normalize(mean=mean, std=std)
# Prepare image at model's expected resolution
img = PIL.Image.fromarray(image).convert("RGB")
new_w, new_h = resize_with_aspect_ratio(img, max_size=512, patch_size=patch_size)
transform = T.Compose(
[
T.Resize((new_h, new_w)),
T.ToTensor(),
]
)
img_tensor = transform(img).unsqueeze(0).to(device)
# Normalize for backbone
img_back = back_norm(img_tensor)
lr_feats = backbone(img_back)
# vit_wrapper already returns features in [B, C, H, W] format
if not isinstance(lr_feats, torch.Tensor):
raise ValueError(f"Unexpected feature type: {type(lr_feats)}")
if len(lr_feats.shape) != 4:
raise ValueError(f"Unexpected feature shape: {lr_feats.shape}. Expected [B, C, H, W].")
# Normalize for upsampling
img_ups = ups_norm(img_tensor)
# Calculate output resolution maintaining aspect ratio
_, _, h, w = lr_feats.shape
aspect_ratio = w / h
if aspect_ratio > 1: # Width > Height
out_h = round_to_nearest_multiple(int(output_resolution / aspect_ratio), patch_size)
out_w = output_resolution
else: # Height >= Width
out_h = output_resolution
out_w = round_to_nearest_multiple(int(output_resolution * aspect_ratio), patch_size)
upsampled_feats = model(img_ups, lr_feats, (out_h, out_w))
# Create visualization using plot_feats
plot_feats(
img_tensor[0],
lr_feats[0],
[upsampled_feats[0]],
legend=["Image", f"Low-Res: {h}x{w}", f"High-Res: {out_h}x{out_w}"],
font_size=14,
)
# Convert matplotlib figure to PIL Image
fig = plt.gcf() # Get current figure
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=100, bbox_inches="tight")
buf.seek(0)
result_img = PIL.Image.open(buf)
plt.close(fig)
return result_img
except Exception as e:
print(f"Error processing image: {e}")
import traceback
traceback.print_exc()
return None
# Popular vision models with friendly names
MODEL_MAPPING = {
"DINOv3-B": "vit_base_patch16_dinov3.lvd1689m",
"RADIOv2.5-B": "radio_v2.5-b",
"DINOv2-B": "vit_base_patch14_dinov2.lvd142m",
"DINOv2-R-B": "vit_base_patch14_reg4_dinov2",
"DINO-B": "vit_base_patch16_224.dino",
"SigLIP2-B": "vit_base_patch16_siglip_512.v2_webli",
"PE-Core-B": "vit_pe_core_base_patch16_224.fb",
"CLIP-B": "vit_base_patch16_clip_224.openai",
}
FRIENDLY_MODEL_NAMES = list(MODEL_MAPPING.keys())
# Create Gradio interface
with gr.Blocks(title="NAF: Zero-Shot Feature Upsampling") as demo:
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 2rem;">
<h1 class="title-text" style="font-size: 3rem; margin-bottom: 0.5rem;">
π― NAF: Zero-Shot Feature Upsampling
</h1>
<p style="font-size: 1.2rem; color: #666; margin-bottom: 0.5rem;">
via Neighborhood Attention Filtering
</p>
<div style="margin-bottom: 1rem;">
<a href="https://github.com/valeoai/NAF" target="_blank"
style="margin: 0 0.5rem; text-decoration: none; color: #667eea; font-weight: bold;">
π¦ Code
</a>
<a href="https://arxiv.org/abs/2511.18452" target="_blank"
style="margin: 0 0.5rem; text-decoration: none; color: #667eea; font-weight: bold;">
π Paper
</a>
</div>
<div class="info-box" style="max-width: 900px; margin: 0 auto;">
<p style="font-size: 1.1rem; margin-bottom: 0.8rem;">
π <strong>Upsample features from any Vision Foundation Model to any resolution using a single upsampler!</strong>
</p>
<p style="font-size: 0.95rem; margin: 0;">
Upload an image, select a model, choose your target resolution, and see NAF in action.
</p>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π€ Input Configuration")
image_input = gr.Image(label="Upload Your Image", type="numpy")
# Sample images
if any(Path(p).exists() for p in SAMPLE_IMAGES):
gr.Examples(
examples=[[p] for p in SAMPLE_IMAGES if Path(p).exists()],
inputs=image_input,
label="πΌοΈ Try Sample Images",
examples_per_page=4,
)
gr.Markdown("### βοΈ Model Settings")
model_dropdown = gr.Dropdown(
choices=FRIENDLY_MODEL_NAMES,
value=FRIENDLY_MODEL_NAMES[0],
label="π€ Vision Foundation Model",
)
custom_model_input = gr.Textbox(
label="βοΈ Or Use Custom Model (timm reference name)",
placeholder="e.g., vit_large_patch14_dinov2.lvd142m",
value="",
)
resolution_slider = gr.Slider(
minimum=64,
maximum=512,
step=64,
value=448,
label="π Output Resolution (max dimension)",
)
process_btn = gr.Button("β¨ Upsample Features", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### π¨ Visualization Results")
output_image = gr.Image(label="Feature Comparison", type="pil")
gr.Markdown(
"""
<div style="background: #f0f7ff; padding: 1rem; border-radius: 8px; border-left: 4px solid #667eea;">
<strong>π Visualization Guide:</strong>
<ul style="margin: 0.5rem 0;">
<li><strong>Left:</strong> Original input image</li>
<li><strong>Center:</strong> Low-resolution features (PCA visualization)</li>
<li><strong>Right:</strong> High-resolution features upsampled by NAF</li>
</ul>
<p style="margin-top: 0.5rem; font-size: 0.9rem; color: #555;">
<em>Note: Output features maintain the aspect ratio of the input image.</em>
</p>
</div>
"""
)
process_btn.click(
fn=process_image,
inputs=[image_input, model_dropdown, custom_model_input, resolution_slider],
outputs=output_image,
)
gr.Markdown(
"""
---
<div style="text-align: center; padding: 2rem 0;">
<h3 style="color: #667eea;">π‘ About NAF</h3>
<p style="max-width: 800px; margin: 1rem auto; font-size: 1.05rem; color: #555;">
NAF enables <strong>zero-shot feature upsampling</strong> from any Vision Foundation Model
to any resolution. It learns to filter and combine features using neighborhood attention,
without requiring model-specific training.
</p>
<div style="margin-top: 1.5rem;">
<a href="https://github.com/valeoai/NAF" target="_blank"
style="margin: 0 1rem; text-decoration: none; color: #667eea; font-weight: bold;">
π¦ GitHub Repository
</a>
<a href="https://arxiv.org/abs/2511.18452" target="_blank"
style="margin: 0 1rem; text-decoration: none; color: #667eea; font-weight: bold;">
π Research Paper
</a>
</div>
</div>
"""
)
if __name__ == "__main__":
demo.launch()
|