Spaces:
Running
Running
init
Browse files- app-gradio.py +63 -0
- process.py +48 -0
- requirements.txt +11 -0
app-gradio.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import io
|
| 4 |
+
import base64
|
| 5 |
+
import urllib.request
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from process import process
|
| 8 |
+
|
| 9 |
+
# 设备检测
|
| 10 |
+
DEVICE = "GPU" if torch.cuda.is_available() else "CPU"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_image(image, url):
|
| 14 |
+
"""加载用户上传或URL图片"""
|
| 15 |
+
if image is not None:
|
| 16 |
+
return image
|
| 17 |
+
elif url:
|
| 18 |
+
try:
|
| 19 |
+
if url.startswith("http"):
|
| 20 |
+
with urllib.request.urlopen(url) as response:
|
| 21 |
+
image_data = response.read()
|
| 22 |
+
return Image.open(io.BytesIO(image_data))
|
| 23 |
+
elif url.startswith("data:image/"):
|
| 24 |
+
header, base64_data = url.split(",", 1)
|
| 25 |
+
return Image.open(io.BytesIO(base64.b64decode(base64_data)))
|
| 26 |
+
except Exception as e:
|
| 27 |
+
return None
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def remove_background(image):
|
| 32 |
+
"""移除背景"""
|
| 33 |
+
if image is None:
|
| 34 |
+
return None, None
|
| 35 |
+
mask, image_nbg = process(image)
|
| 36 |
+
return mask, image_nbg
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def interface(image, url):
|
| 40 |
+
"""完整的Gradio处理流程"""
|
| 41 |
+
image = load_image(image, url)
|
| 42 |
+
if image is None:
|
| 43 |
+
return None, None, "请上传有效图片或输入正确的URL"
|
| 44 |
+
mask, image_nbg = remove_background(image)
|
| 45 |
+
return mask, image_nbg, "处理完成" if mask else "处理失败"
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Gradio UI
|
| 49 |
+
demo = gr.Interface(
|
| 50 |
+
fn=interface,
|
| 51 |
+
inputs=[gr.Image(type="pil", label="上传图片"), gr.Textbox(label="或输入图片URL")],
|
| 52 |
+
outputs=[
|
| 53 |
+
gr.Image(type="pil", label="掩码"),
|
| 54 |
+
gr.Image(type="pil", label="去除背景的图片"),
|
| 55 |
+
],
|
| 56 |
+
title="AI 抠图 (RMBG 2.0)",
|
| 57 |
+
description="上传图片或提供URL,自动去除背景",
|
| 58 |
+
theme="default",
|
| 59 |
+
flagging_mode="never",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
demo.queue()
|
| 63 |
+
demo.launch()
|
process.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
from transformers import AutoModelForImageSegmentation
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_model(model_id_or_path="briaai/RMBG-2.0", precision=0, device="cuda"):
|
| 11 |
+
model = AutoModelForImageSegmentation.from_pretrained(
|
| 12 |
+
model_id_or_path, trust_remote_code=True
|
| 13 |
+
)
|
| 14 |
+
torch.set_float32_matmul_precision(["high", "highest"][precision])
|
| 15 |
+
model.to(device)
|
| 16 |
+
_ = model.eval()
|
| 17 |
+
|
| 18 |
+
# Data settings
|
| 19 |
+
image_size = (1024, 1024)
|
| 20 |
+
transform_image = transforms.Compose(
|
| 21 |
+
[
|
| 22 |
+
transforms.Resize(image_size),
|
| 23 |
+
transforms.ToTensor(),
|
| 24 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 25 |
+
]
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
return model, transform_image
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def process(image: Image.Image) -> Image.Image:
|
| 32 |
+
if "RMBG-2.0" not in os.listdir("."):
|
| 33 |
+
os.system(
|
| 34 |
+
"modelscope download --model AI-ModelScope/RMBG-2.0 --local_dir RMBG-2.0 --exclude *.onnx *.bin"
|
| 35 |
+
)
|
| 36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
+
precision = 0
|
| 38 |
+
model, transform = load_model("RMBG-2.0", precision=precision, device=device)
|
| 39 |
+
image = image.copy()
|
| 40 |
+
input_images = transform(image).unsqueeze(0).to(device)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
preds = model(input_images)[-1].sigmoid().cpu()
|
| 43 |
+
pred = preds[0].squeeze()
|
| 44 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 45 |
+
mask = pred_pil.resize(image.size)
|
| 46 |
+
image.putalpha(mask)
|
| 47 |
+
|
| 48 |
+
return mask, image
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
pillow
|
| 4 |
+
kornia
|
| 5 |
+
transformers
|
| 6 |
+
streamlit
|
| 7 |
+
huggingface
|
| 8 |
+
timm
|
| 9 |
+
modelscope
|
| 10 |
+
psutil
|
| 11 |
+
gradio
|