File size: 11,821 Bytes
a1aad67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/**
 * Audio Processing for LFM2-Audio ONNX Runtime Web
 *
 * Computes mel spectrograms from audio input for the audio encoder.
 * Matches the Python compute_mel_spectrogram_numpy implementation.
 */

// Default mel config (matches mel_config.json)
const DEFAULT_MEL_CONFIG = {
  sample_rate: 16000,
  n_fft: 512,
  win_length: 400,
  hop_length: 160,
  n_mels: 128,
  fmin: 0,
  fmax: 8000,
  preemph: 0.97,
  log_zero_guard: 5.960464477539063e-08,
  normalize: 'per_feature',
  mel_norm: 'slaney',
};

let melConfig = { ...DEFAULT_MEL_CONFIG };
let melFilterbank = null;

/**
 * Load mel config from model path
 * @param {string} modelPath - Path to model directory
 */
export async function loadMelConfig(modelPath) {
  try {
    const response = await fetch(`${modelPath}/onnx/mel_config.json`, {
      mode: 'cors',
      credentials: 'omit',
    });
    if (response.ok) {
      melConfig = await response.json();
      console.log('Loaded mel config:', melConfig);
    }
  } catch (e) {
    console.warn('Could not load mel_config.json, using defaults');
  }

  // Pre-compute mel filterbank
  melFilterbank = createMelFilterbank(
    melConfig.sample_rate,
    melConfig.n_fft,
    melConfig.n_mels,
    melConfig.fmin,
    melConfig.fmax
  );
}

/**
 * Create mel filterbank matrix (simplified slaney normalization)
 * @param {number} sr - Sample rate
 * @param {number} nFft - FFT size
 * @param {number} nMels - Number of mel bands
 * @param {number} fmin - Minimum frequency
 * @param {number} fmax - Maximum frequency
 * @returns {Float32Array[]} - Mel filterbank [n_mels, n_fft/2+1]
 */
function createMelFilterbank(sr, nFft, nMels, fmin, fmax) {
  const nFreqs = Math.floor(nFft / 2) + 1;

  // Mel scale conversion functions
  const hzToMel = (hz) => 2595 * Math.log10(1 + hz / 700);
  const melToHz = (mel) => 700 * (Math.pow(10, mel / 2595) - 1);

  // Create mel points
  const melMin = hzToMel(fmin);
  const melMax = hzToMel(fmax);
  const melPoints = new Float32Array(nMels + 2);
  for (let i = 0; i < nMels + 2; i++) {
    melPoints[i] = melMin + (melMax - melMin) * i / (nMels + 1);
  }

  // Convert back to Hz and then to FFT bins
  const hzPoints = melPoints.map(melToHz);
  const binPoints = hzPoints.map((hz) => Math.floor((nFft + 1) * hz / sr));

  // Create filterbank
  const filterbank = [];
  for (let m = 0; m < nMels; m++) {
    const filter = new Float32Array(nFreqs);
    const start = binPoints[m];
    const center = binPoints[m + 1];
    const end = binPoints[m + 2];

    // Rising edge
    for (let k = start; k < center; k++) {
      if (k < nFreqs) {
        filter[k] = (k - start) / (center - start);
      }
    }
    // Falling edge
    for (let k = center; k < end; k++) {
      if (k < nFreqs) {
        filter[k] = (end - k) / (end - center);
      }
    }

    // Slaney normalization
    const enorm = 2.0 / (hzPoints[m + 2] - hzPoints[m]);
    for (let k = 0; k < nFreqs; k++) {
      filter[k] *= enorm;
    }

    filterbank.push(filter);
  }

  return filterbank;
}

/**
 * Create Hann window
 * @param {number} length - Window length
 * @returns {Float32Array} - Hann window
 */
function createHannWindow(length) {
  const window = new Float32Array(length);
  for (let i = 0; i < length; i++) {
    window[i] = 0.5 * (1 - Math.cos(2 * Math.PI * i / (length - 1)));
  }
  return window;
}

/**
 * Resample audio to target sample rate (simple linear interpolation)
 * @param {Float32Array} audio - Input audio
 * @param {number} srcSr - Source sample rate
 * @param {number} dstSr - Target sample rate
 * @returns {Float32Array} - Resampled audio
 */
function resampleAudio(audio, srcSr, dstSr) {
  if (srcSr === dstSr) return audio;

  const ratio = srcSr / dstSr;
  const newLength = Math.floor(audio.length / ratio);
  const resampled = new Float32Array(newLength);

  for (let i = 0; i < newLength; i++) {
    const srcIdx = i * ratio;
    const srcIdxFloor = Math.floor(srcIdx);
    const srcIdxCeil = Math.min(srcIdxFloor + 1, audio.length - 1);
    const frac = srcIdx - srcIdxFloor;
    resampled[i] = audio[srcIdxFloor] * (1 - frac) + audio[srcIdxCeil] * frac;
  }

  return resampled;
}

// === FFT Cache for Mel Spectrogram ===
let _fftCache = null;

/**
 * Initialize radix-2 FFT for a given size (must be power of 2)
 */
function initFFT(n) {
  if (_fftCache && _fftCache.n === n) return _fftCache;

  // Precompute twiddle factors
  const twiddleRe = new Float32Array(n / 2);
  const twiddleIm = new Float32Array(n / 2);
  for (let i = 0; i < n / 2; i++) {
    const angle = -2 * Math.PI * i / n;
    twiddleRe[i] = Math.cos(angle);
    twiddleIm[i] = Math.sin(angle);
  }

  // Precompute bit-reversal permutation
  const bitrev = new Uint32Array(n);
  for (let i = 0; i < n; i++) {
    let j = 0;
    let x = i;
    for (let k = 1; k < n; k <<= 1) {
      j = (j << 1) | (x & 1);
      x >>= 1;
    }
    bitrev[i] = j;
  }

  // Reusable work arrays
  const workRe = new Float32Array(n);
  const workIm = new Float32Array(n);

  _fftCache = { n, twiddleRe, twiddleIm, bitrev, workRe, workIm };
  return _fftCache;
}

/**
 * Compute Real FFT magnitude using radix-2 Cooley-Tukey
 * @param {Float32Array} frame - Input frame (length must be power of 2)
 * @returns {Float32Array} - Magnitude spectrum [n/2+1]
 */
function computeRfftMagnitude(frame) {
  const n = frame.length;
  const nFreqs = Math.floor(n / 2) + 1;
  const cache = initFFT(n);

  const { twiddleRe, twiddleIm, bitrev, workRe, workIm } = cache;

  // Copy input with bit-reversal permutation
  for (let i = 0; i < n; i++) {
    workRe[bitrev[i]] = frame[i];
    workIm[bitrev[i]] = 0;
  }

  // Cooley-Tukey butterflies
  for (let len = 2; len <= n; len <<= 1) {
    const halfLen = len >> 1;
    const step = n / len;
    for (let i = 0; i < n; i += len) {
      for (let j = 0; j < halfLen; j++) {
        const twIdx = j * step;
        const wRe = twiddleRe[twIdx];
        const wIm = twiddleIm[twIdx];
        const u = i + j;
        const v = u + halfLen;
        const tRe = wRe * workRe[v] - wIm * workIm[v];
        const tIm = wRe * workIm[v] + wIm * workRe[v];
        workRe[v] = workRe[u] - tRe;
        workIm[v] = workIm[u] - tIm;
        workRe[u] += tRe;
        workIm[u] += tIm;
      }
    }
  }

  // Compute magnitude for positive frequencies
  const magnitude = new Float32Array(nFreqs);
  for (let k = 0; k < nFreqs; k++) {
    magnitude[k] = Math.sqrt(workRe[k] * workRe[k] + workIm[k] * workIm[k]);
  }

  return magnitude;
}

/**
 * Compute mel spectrogram from audio data
 * @param {Float32Array} audioData - Audio samples in [-1, 1]
 * @param {number} sampleRate - Audio sample rate
 * @returns {{melFeatures: Float32Array, numFrames: number}} - Mel features [time, n_mels]
 */
export function computeMelSpectrogram(audioData, sampleRate) {
  const {
    sample_rate: targetSr,
    n_fft: nFft,
    win_length: winLength,
    hop_length: hopLength,
    preemph,
    log_zero_guard: logZeroGuard,
    n_mels: nMels,
  } = melConfig;

  // Ensure filterbank is created
  if (!melFilterbank) {
    melFilterbank = createMelFilterbank(targetSr, nFft, nMels, melConfig.fmin, melConfig.fmax);
  }

  // 1. Resample to target sample rate
  let audio = resampleAudio(audioData, sampleRate, targetSr);

  // 2. Pre-emphasis filter: y[t] = x[t] - preemph * x[t-1]
  const audioPreemph = new Float32Array(audio.length);
  audioPreemph[0] = audio[0];
  for (let i = 1; i < audio.length; i++) {
    audioPreemph[i] = audio[i] - preemph * audio[i - 1];
  }

  // 3. Pad for center=True STFT
  const padAmount = Math.floor(nFft / 2);
  const audioPadded = new Float32Array(audio.length + 2 * padAmount);
  audioPadded.set(audioPreemph, padAmount);

  // 4. Frame the signal with windowing
  const numFrames = 1 + Math.floor((audioPadded.length - nFft) / hopLength);
  const nFreqs = Math.floor(nFft / 2) + 1;

  // Create window (centered in frame)
  const hannWindow = createHannWindow(winLength);
  const padLeft = Math.floor((nFft - winLength) / 2);
  const paddedWindow = new Float32Array(nFft);
  for (let i = 0; i < winLength; i++) {
    paddedWindow[padLeft + i] = hannWindow[i];
  }

  // 5. Compute STFT magnitude and mel spectrogram
  const melFeatures = new Float32Array(numFrames * nMels);

  for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) {
    // Extract and window frame
    const start = frameIdx * hopLength;
    const frame = new Float32Array(nFft);
    for (let i = 0; i < nFft; i++) {
      frame[i] = audioPadded[start + i] * paddedWindow[i];
    }

    // Compute magnitude spectrum
    const magnitude = computeRfftMagnitude(frame);

    // Apply mel filterbank
    for (let m = 0; m < nMels; m++) {
      let melVal = 0;
      for (let k = 0; k < nFreqs; k++) {
        melVal += melFilterbank[m][k] * magnitude[k] * magnitude[k]; // Power spectrum
      }
      // Log mel with guard
      melFeatures[frameIdx * nMels + m] = Math.log(Math.max(melVal, logZeroGuard));
    }
  }

  // 6. Per-feature normalization (if enabled)
  if (melConfig.normalize === 'per_feature') {
    for (let m = 0; m < nMels; m++) {
      let mean = 0;
      let std = 0;
      for (let t = 0; t < numFrames; t++) {
        mean += melFeatures[t * nMels + m];
      }
      mean /= numFrames;

      for (let t = 0; t < numFrames; t++) {
        const diff = melFeatures[t * nMels + m] - mean;
        std += diff * diff;
      }
      std = Math.sqrt(std / numFrames + 1e-5);

      for (let t = 0; t < numFrames; t++) {
        melFeatures[t * nMels + m] = (melFeatures[t * nMels + m] - mean) / std;
      }
    }
  }

  return { melFeatures, numFrames };
}

/**
 * Load audio file and decode to Float32Array
 * @param {File|Blob} file - Audio file
 * @returns {Promise<{audioData: Float32Array, sampleRate: number}>}
 */
export async function loadAudioFile(file) {
  const arrayBuffer = await file.arrayBuffer();
  const audioContext = new (window.AudioContext || window.webkitAudioContext)();

  try {
    const audioBuffer = await audioContext.decodeAudioData(arrayBuffer);

    // Get mono audio (average channels if stereo)
    let audioData;
    if (audioBuffer.numberOfChannels === 1) {
      audioData = audioBuffer.getChannelData(0);
    } else {
      const ch0 = audioBuffer.getChannelData(0);
      const ch1 = audioBuffer.getChannelData(1);
      audioData = new Float32Array(ch0.length);
      for (let i = 0; i < ch0.length; i++) {
        audioData[i] = (ch0[i] + ch1[i]) / 2;
      }
    }

    return {
      audioData: new Float32Array(audioData), // Copy to avoid detached buffer issues
      sampleRate: audioBuffer.sampleRate,
    };
  } finally {
    audioContext.close();
  }
}

/**
 * Record audio from microphone
 * @param {number} maxDurationMs - Maximum recording duration in ms
 * @returns {Promise<{audioData: Float32Array, sampleRate: number}>}
 */
export async function recordAudio(maxDurationMs = 30000) {
  const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
  const mediaRecorder = new MediaRecorder(stream);
  const chunks = [];

  return new Promise((resolve, reject) => {
    mediaRecorder.ondataavailable = (e) => chunks.push(e.data);

    mediaRecorder.onstop = async () => {
      stream.getTracks().forEach((track) => track.stop());
      const blob = new Blob(chunks, { type: 'audio/webm' });
      try {
        const result = await loadAudioFile(blob);
        resolve(result);
      } catch (e) {
        reject(e);
      }
    };

    mediaRecorder.onerror = (e) => {
      stream.getTracks().forEach((track) => track.stop());
      reject(e);
    };

    mediaRecorder.start();

    // Auto-stop after max duration
    setTimeout(() => {
      if (mediaRecorder.state === 'recording') {
        mediaRecorder.stop();
      }
    }, maxDurationMs);
  });
}

export { melConfig };