File size: 11,821 Bytes
a1aad67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
/**
* Audio Processing for LFM2-Audio ONNX Runtime Web
*
* Computes mel spectrograms from audio input for the audio encoder.
* Matches the Python compute_mel_spectrogram_numpy implementation.
*/
// Default mel config (matches mel_config.json)
const DEFAULT_MEL_CONFIG = {
sample_rate: 16000,
n_fft: 512,
win_length: 400,
hop_length: 160,
n_mels: 128,
fmin: 0,
fmax: 8000,
preemph: 0.97,
log_zero_guard: 5.960464477539063e-08,
normalize: 'per_feature',
mel_norm: 'slaney',
};
let melConfig = { ...DEFAULT_MEL_CONFIG };
let melFilterbank = null;
/**
* Load mel config from model path
* @param {string} modelPath - Path to model directory
*/
export async function loadMelConfig(modelPath) {
try {
const response = await fetch(`${modelPath}/onnx/mel_config.json`, {
mode: 'cors',
credentials: 'omit',
});
if (response.ok) {
melConfig = await response.json();
console.log('Loaded mel config:', melConfig);
}
} catch (e) {
console.warn('Could not load mel_config.json, using defaults');
}
// Pre-compute mel filterbank
melFilterbank = createMelFilterbank(
melConfig.sample_rate,
melConfig.n_fft,
melConfig.n_mels,
melConfig.fmin,
melConfig.fmax
);
}
/**
* Create mel filterbank matrix (simplified slaney normalization)
* @param {number} sr - Sample rate
* @param {number} nFft - FFT size
* @param {number} nMels - Number of mel bands
* @param {number} fmin - Minimum frequency
* @param {number} fmax - Maximum frequency
* @returns {Float32Array[]} - Mel filterbank [n_mels, n_fft/2+1]
*/
function createMelFilterbank(sr, nFft, nMels, fmin, fmax) {
const nFreqs = Math.floor(nFft / 2) + 1;
// Mel scale conversion functions
const hzToMel = (hz) => 2595 * Math.log10(1 + hz / 700);
const melToHz = (mel) => 700 * (Math.pow(10, mel / 2595) - 1);
// Create mel points
const melMin = hzToMel(fmin);
const melMax = hzToMel(fmax);
const melPoints = new Float32Array(nMels + 2);
for (let i = 0; i < nMels + 2; i++) {
melPoints[i] = melMin + (melMax - melMin) * i / (nMels + 1);
}
// Convert back to Hz and then to FFT bins
const hzPoints = melPoints.map(melToHz);
const binPoints = hzPoints.map((hz) => Math.floor((nFft + 1) * hz / sr));
// Create filterbank
const filterbank = [];
for (let m = 0; m < nMels; m++) {
const filter = new Float32Array(nFreqs);
const start = binPoints[m];
const center = binPoints[m + 1];
const end = binPoints[m + 2];
// Rising edge
for (let k = start; k < center; k++) {
if (k < nFreqs) {
filter[k] = (k - start) / (center - start);
}
}
// Falling edge
for (let k = center; k < end; k++) {
if (k < nFreqs) {
filter[k] = (end - k) / (end - center);
}
}
// Slaney normalization
const enorm = 2.0 / (hzPoints[m + 2] - hzPoints[m]);
for (let k = 0; k < nFreqs; k++) {
filter[k] *= enorm;
}
filterbank.push(filter);
}
return filterbank;
}
/**
* Create Hann window
* @param {number} length - Window length
* @returns {Float32Array} - Hann window
*/
function createHannWindow(length) {
const window = new Float32Array(length);
for (let i = 0; i < length; i++) {
window[i] = 0.5 * (1 - Math.cos(2 * Math.PI * i / (length - 1)));
}
return window;
}
/**
* Resample audio to target sample rate (simple linear interpolation)
* @param {Float32Array} audio - Input audio
* @param {number} srcSr - Source sample rate
* @param {number} dstSr - Target sample rate
* @returns {Float32Array} - Resampled audio
*/
function resampleAudio(audio, srcSr, dstSr) {
if (srcSr === dstSr) return audio;
const ratio = srcSr / dstSr;
const newLength = Math.floor(audio.length / ratio);
const resampled = new Float32Array(newLength);
for (let i = 0; i < newLength; i++) {
const srcIdx = i * ratio;
const srcIdxFloor = Math.floor(srcIdx);
const srcIdxCeil = Math.min(srcIdxFloor + 1, audio.length - 1);
const frac = srcIdx - srcIdxFloor;
resampled[i] = audio[srcIdxFloor] * (1 - frac) + audio[srcIdxCeil] * frac;
}
return resampled;
}
// === FFT Cache for Mel Spectrogram ===
let _fftCache = null;
/**
* Initialize radix-2 FFT for a given size (must be power of 2)
*/
function initFFT(n) {
if (_fftCache && _fftCache.n === n) return _fftCache;
// Precompute twiddle factors
const twiddleRe = new Float32Array(n / 2);
const twiddleIm = new Float32Array(n / 2);
for (let i = 0; i < n / 2; i++) {
const angle = -2 * Math.PI * i / n;
twiddleRe[i] = Math.cos(angle);
twiddleIm[i] = Math.sin(angle);
}
// Precompute bit-reversal permutation
const bitrev = new Uint32Array(n);
for (let i = 0; i < n; i++) {
let j = 0;
let x = i;
for (let k = 1; k < n; k <<= 1) {
j = (j << 1) | (x & 1);
x >>= 1;
}
bitrev[i] = j;
}
// Reusable work arrays
const workRe = new Float32Array(n);
const workIm = new Float32Array(n);
_fftCache = { n, twiddleRe, twiddleIm, bitrev, workRe, workIm };
return _fftCache;
}
/**
* Compute Real FFT magnitude using radix-2 Cooley-Tukey
* @param {Float32Array} frame - Input frame (length must be power of 2)
* @returns {Float32Array} - Magnitude spectrum [n/2+1]
*/
function computeRfftMagnitude(frame) {
const n = frame.length;
const nFreqs = Math.floor(n / 2) + 1;
const cache = initFFT(n);
const { twiddleRe, twiddleIm, bitrev, workRe, workIm } = cache;
// Copy input with bit-reversal permutation
for (let i = 0; i < n; i++) {
workRe[bitrev[i]] = frame[i];
workIm[bitrev[i]] = 0;
}
// Cooley-Tukey butterflies
for (let len = 2; len <= n; len <<= 1) {
const halfLen = len >> 1;
const step = n / len;
for (let i = 0; i < n; i += len) {
for (let j = 0; j < halfLen; j++) {
const twIdx = j * step;
const wRe = twiddleRe[twIdx];
const wIm = twiddleIm[twIdx];
const u = i + j;
const v = u + halfLen;
const tRe = wRe * workRe[v] - wIm * workIm[v];
const tIm = wRe * workIm[v] + wIm * workRe[v];
workRe[v] = workRe[u] - tRe;
workIm[v] = workIm[u] - tIm;
workRe[u] += tRe;
workIm[u] += tIm;
}
}
}
// Compute magnitude for positive frequencies
const magnitude = new Float32Array(nFreqs);
for (let k = 0; k < nFreqs; k++) {
magnitude[k] = Math.sqrt(workRe[k] * workRe[k] + workIm[k] * workIm[k]);
}
return magnitude;
}
/**
* Compute mel spectrogram from audio data
* @param {Float32Array} audioData - Audio samples in [-1, 1]
* @param {number} sampleRate - Audio sample rate
* @returns {{melFeatures: Float32Array, numFrames: number}} - Mel features [time, n_mels]
*/
export function computeMelSpectrogram(audioData, sampleRate) {
const {
sample_rate: targetSr,
n_fft: nFft,
win_length: winLength,
hop_length: hopLength,
preemph,
log_zero_guard: logZeroGuard,
n_mels: nMels,
} = melConfig;
// Ensure filterbank is created
if (!melFilterbank) {
melFilterbank = createMelFilterbank(targetSr, nFft, nMels, melConfig.fmin, melConfig.fmax);
}
// 1. Resample to target sample rate
let audio = resampleAudio(audioData, sampleRate, targetSr);
// 2. Pre-emphasis filter: y[t] = x[t] - preemph * x[t-1]
const audioPreemph = new Float32Array(audio.length);
audioPreemph[0] = audio[0];
for (let i = 1; i < audio.length; i++) {
audioPreemph[i] = audio[i] - preemph * audio[i - 1];
}
// 3. Pad for center=True STFT
const padAmount = Math.floor(nFft / 2);
const audioPadded = new Float32Array(audio.length + 2 * padAmount);
audioPadded.set(audioPreemph, padAmount);
// 4. Frame the signal with windowing
const numFrames = 1 + Math.floor((audioPadded.length - nFft) / hopLength);
const nFreqs = Math.floor(nFft / 2) + 1;
// Create window (centered in frame)
const hannWindow = createHannWindow(winLength);
const padLeft = Math.floor((nFft - winLength) / 2);
const paddedWindow = new Float32Array(nFft);
for (let i = 0; i < winLength; i++) {
paddedWindow[padLeft + i] = hannWindow[i];
}
// 5. Compute STFT magnitude and mel spectrogram
const melFeatures = new Float32Array(numFrames * nMels);
for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) {
// Extract and window frame
const start = frameIdx * hopLength;
const frame = new Float32Array(nFft);
for (let i = 0; i < nFft; i++) {
frame[i] = audioPadded[start + i] * paddedWindow[i];
}
// Compute magnitude spectrum
const magnitude = computeRfftMagnitude(frame);
// Apply mel filterbank
for (let m = 0; m < nMels; m++) {
let melVal = 0;
for (let k = 0; k < nFreqs; k++) {
melVal += melFilterbank[m][k] * magnitude[k] * magnitude[k]; // Power spectrum
}
// Log mel with guard
melFeatures[frameIdx * nMels + m] = Math.log(Math.max(melVal, logZeroGuard));
}
}
// 6. Per-feature normalization (if enabled)
if (melConfig.normalize === 'per_feature') {
for (let m = 0; m < nMels; m++) {
let mean = 0;
let std = 0;
for (let t = 0; t < numFrames; t++) {
mean += melFeatures[t * nMels + m];
}
mean /= numFrames;
for (let t = 0; t < numFrames; t++) {
const diff = melFeatures[t * nMels + m] - mean;
std += diff * diff;
}
std = Math.sqrt(std / numFrames + 1e-5);
for (let t = 0; t < numFrames; t++) {
melFeatures[t * nMels + m] = (melFeatures[t * nMels + m] - mean) / std;
}
}
}
return { melFeatures, numFrames };
}
/**
* Load audio file and decode to Float32Array
* @param {File|Blob} file - Audio file
* @returns {Promise<{audioData: Float32Array, sampleRate: number}>}
*/
export async function loadAudioFile(file) {
const arrayBuffer = await file.arrayBuffer();
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
try {
const audioBuffer = await audioContext.decodeAudioData(arrayBuffer);
// Get mono audio (average channels if stereo)
let audioData;
if (audioBuffer.numberOfChannels === 1) {
audioData = audioBuffer.getChannelData(0);
} else {
const ch0 = audioBuffer.getChannelData(0);
const ch1 = audioBuffer.getChannelData(1);
audioData = new Float32Array(ch0.length);
for (let i = 0; i < ch0.length; i++) {
audioData[i] = (ch0[i] + ch1[i]) / 2;
}
}
return {
audioData: new Float32Array(audioData), // Copy to avoid detached buffer issues
sampleRate: audioBuffer.sampleRate,
};
} finally {
audioContext.close();
}
}
/**
* Record audio from microphone
* @param {number} maxDurationMs - Maximum recording duration in ms
* @returns {Promise<{audioData: Float32Array, sampleRate: number}>}
*/
export async function recordAudio(maxDurationMs = 30000) {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
const mediaRecorder = new MediaRecorder(stream);
const chunks = [];
return new Promise((resolve, reject) => {
mediaRecorder.ondataavailable = (e) => chunks.push(e.data);
mediaRecorder.onstop = async () => {
stream.getTracks().forEach((track) => track.stop());
const blob = new Blob(chunks, { type: 'audio/webm' });
try {
const result = await loadAudioFile(blob);
resolve(result);
} catch (e) {
reject(e);
}
};
mediaRecorder.onerror = (e) => {
stream.getTracks().forEach((track) => track.stop());
reject(e);
};
mediaRecorder.start();
// Auto-stop after max duration
setTimeout(() => {
if (mediaRecorder.state === 'recording') {
mediaRecorder.stop();
}
}, maxDurationMs);
});
}
export { melConfig };
|