File size: 24,844 Bytes
af8e698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
"""Core repository analysis helpers used by both the Gradio UI and MCP server."""

from __future__ import annotations

from typing import Any, Dict, List, Optional, Tuple

import asyncio
import json
import logging
import os
import tempfile
from pathlib import Path

import contextlib
import io
import re
import traceback
import requests
from git import GitCommandError, Repo
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
from dotenv import load_dotenv, dotenv_values
from mcp import ClientSession, StdioServerParameters
from mcp.client.streamable_http import streamablehttp_client
from mcp.client.stdio import stdio_client

logger = logging.getLogger(__name__)

PROJECT_ROOT = Path(__file__).resolve().parent
DOTENV_PATH = PROJECT_ROOT / ".env"
load_dotenv(DOTENV_PATH, override=False)
_ENV_CACHE = dotenv_values(DOTENV_PATH) if DOTENV_PATH.exists() else {}

DOC_DIRECTORIES = ("docs", "documentation", "doc")
DOC_EXTENSIONS = (".md", ".rst", ".txt")
DOC_FILENAMES = {"readme", "readme.md", "readme.rst", "changelog", "contributing"}
IGNORE_DIRS = {".git", "__pycache__", "node_modules", "dist", "build", ".venv", "venv", ".tox"}
DEFAULT_EMBEDDING_MODEL = os.getenv("SENTENCE_EMBEDDER", "sentence-transformers/all-MiniLM-L6-v2")


class RepoAnalyzer:
    """Utility that clones a repo and extracts any documentation-esque files."""

    def __init__(self, repo_url: str, working_dir: str):
        self.repo_url = repo_url.strip()
        self.working_dir = Path(working_dir)
        self.repo_name = self._derive_repo_name()
        self.repo_path = self.working_dir / self.repo_name
        self.docs_path: Path | None = None

    def _derive_repo_name(self) -> str:
        base = self.repo_url.rstrip("/").split("/")[-1]
        if base.endswith(".git"):
            base = base[:-4]
        return base or "repository"

    def clone_repo(self) -> bool:
        try:
            Repo.clone_from(self.repo_url, self.repo_path)
            logger.info("Cloned %s", self.repo_url)
            return True
        except GitCommandError as err:
            logger.error("Failed to clone repo: %s", err)
            return False

    def resolve_docs_directory(self) -> bool:
        for doc_dir in DOC_DIRECTORIES:
            candidate = self.repo_path / doc_dir
            if candidate.exists() and candidate.is_dir():
                self.docs_path = candidate
                return True
        return False

    def find_documentation_files(self) -> List[Path]:
        doc_files: List[Path] = []
        for root, dirs, files in os.walk(self.repo_path):
            dirs[:] = [d for d in dirs if d not in IGNORE_DIRS and not d.startswith(".")]
            for filename in files:
                lower = filename.lower()
                if lower.endswith(DOC_EXTENSIONS) or lower in DOC_FILENAMES:
                    doc_files.append(Path(root) / filename)
        return doc_files

    def read_documentation_files(self, doc_files: List[Path]) -> List[Dict[str, Any]]:
        docs: List[Dict[str, Any]] = []
        for path in doc_files:
            try:
                content = path.read_text(encoding="utf-8", errors="ignore")
            except Exception as err:  # pragma: no cover - best effort read
                logger.warning("Unable to read %s: %s", path, err)
                continue
            docs.append({
                "path": str(path.relative_to(self.repo_path)),
                "content": content,
            })
        return docs

    def get_repo_structure(self) -> List[str]:
        structure: List[str] = []
        for root, dirs, files in os.walk(self.repo_path):
            dirs[:] = [d for d in dirs if not d.startswith(".") and d not in IGNORE_DIRS]
            files = [f for f in files if not f.startswith(".")]
            rel_root = Path(root)
            level = len(rel_root.relative_to(self.repo_path).parts)
            indent = " " * 4 * level
            structure.append(f"{indent}{rel_root.name}/")
            subindent = " " * 4 * (level + 1)
            for file_name in files:
                structure.append(f"{subindent}{file_name}")
        return structure

    def analyze_repo(self, persist_path: Path | None = None) -> Dict[str, Any]:
        if not self.clone_repo():
            return {"error": "Failed to clone repository. Confirm the URL is reachable."}

        has_docs = self.resolve_docs_directory()
        doc_files = self.find_documentation_files()
        documentation = self.read_documentation_files(doc_files) if doc_files else []

        if persist_path:
            persist_path.mkdir(parents=True, exist_ok=True)
            for doc in documentation:
                rel_path = Path(doc["path"]).with_suffix(".txt")
                target_file = persist_path / rel_path
                target_file.parent.mkdir(parents=True, exist_ok=True)
                target_file.write_text(doc.get("content", ""))
            metadata_file = persist_path / "metadata.json"
            metadata_file.write_text(json.dumps({
                "repo_url": self.repo_url,
                "repo_name": self.repo_name,
                "documentation_files": [doc["path"] for doc in documentation],
            }, indent=2))

        return {
            "repo_url": self.repo_url,
            "repo_name": self.repo_name,
            "has_documentation": has_docs,
            "documentation_count": len(documentation),
            "documentation_files": [doc["path"] for doc in documentation],
            "documentation": documentation,
            "structure": self.get_repo_structure(),
        }


def analyze_github_repo(repo_url: str, *, persist_dir: Optional[Path] = None) -> Dict[str, Any]:
    repo_url = (repo_url or "").strip()
    if not repo_url:
        return {"error": "Please provide a GitHub repository URL."}

    with tempfile.TemporaryDirectory() as tmp_dir:
        analyzer = RepoAnalyzer(repo_url, tmp_dir)
        return analyzer.analyze_repo(persist_dir)


def analyze_local_repo(root_dir: str) -> Dict[str, Any]:
    """Analyze a local repository directory without performing a git clone.



    This mirrors the payload shape of ``analyze_github_repo`` so the UI

    and bookmarking logic can treat remote and local repos uniformly.

    """
    root = Path(root_dir)
    if not root.exists() or not root.is_dir():
        return {"error": "Uploaded folder was not found on the server."}

    repo_name = root.name or "local-repository"

    doc_files: List[Path] = []
    for r, dirs, files in os.walk(root):
        dirs[:] = [d for d in dirs if d not in IGNORE_DIRS and not d.startswith(".")]
        for filename in files:
            lower = filename.lower()
            if lower.endswith(DOC_EXTENSIONS) or lower in DOC_FILENAMES:
                doc_files.append(Path(r) / filename)

    documentation: List[Dict[str, Any]] = []
    for path in doc_files:
        try:
            content = path.read_text(encoding="utf-8", errors="ignore")
        except Exception as err:  # pragma: no cover - best effort read
            logger.warning("Unable to read %s: %s", path, err)
            continue
        documentation.append(
            {
                "path": str(path.relative_to(root)),
                "content": content,
            }
        )

    structure: List[str] = []
    for r, dirs, files in os.walk(root):
        dirs[:] = [d for d in dirs if not d.startswith(".") and d not in IGNORE_DIRS]
        files = [f for f in files if not f.startswith(".")]
        rel_root = Path(r)
        level = len(rel_root.relative_to(root).parts)
        indent = " " * 4 * level
        structure.append(f"{indent}{rel_root.name}/")
        subindent = " " * 4 * (level + 1)
        for file_name in files:
            structure.append(f"{subindent}{file_name}")

    return {
        "repo_url": f"local://{repo_name}",
        "repo_name": repo_name,
        "has_documentation": bool(doc_files),
        "documentation_count": len(documentation),
        "documentation_files": [str(p.relative_to(root)) for p in doc_files],
        "documentation": documentation,
        "structure": structure,
    }


def _get_embeddings() -> HuggingFaceEmbeddings:
    return HuggingFaceEmbeddings(model_name=DEFAULT_EMBEDDING_MODEL)


def build_repo_vector_store(documents: List[Dict[str, Any]], *, persist_path: Path) -> Tuple[Optional[Chroma], int]:
    if not documents:
        return None, 0

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
    texts: List[str] = []
    metadatas: List[Dict[str, str]] = []
    for doc in documents:
        content = doc.get("content") or ""
        if not content:
            continue
        chunks = text_splitter.split_text(content)
        texts.extend(chunks)
        metadatas.extend({"path": doc.get("path", "") or ""} for _ in chunks)

    if not texts:
        return None, 0

    embeddings = _get_embeddings()
    persist_path.mkdir(parents=True, exist_ok=True)
    vectorstore = Chroma.from_texts(
        texts=texts,
        metadatas=metadatas,
        embedding=embeddings,
        persist_directory=str(persist_path),
    )
    return vectorstore, len(texts)


def load_vector_store(vector_dir: Path) -> Optional[Chroma]:
    if not vector_dir.exists():
        return None

    embeddings = _get_embeddings()
    return Chroma(
        persist_directory=str(vector_dir),
        embedding_function=embeddings,
    )


def _get_env_var(*names: str) -> str:
    for name in names:
        value = os.getenv(name)
        if value:
            value = value.strip().strip('"').strip("'")
            if value:
                return value
        cache_val = (_ENV_CACHE or {}).get(name)
        if cache_val:
            cache_val = cache_val.strip().strip('"').strip("'")
            if cache_val:
                return cache_val
    return ""


def get_llm_provider() -> str:
    provider = os.getenv("LLM_PROVIDER", "").strip().lower()
    if provider in ("openrouter", "openrounter"):
        return "openrouter"
    if provider == "openai":
        return "openai"
    if _get_env_var("OPENAI_API_KEY"):
        return "openai"
    if _get_env_var("OPENROUTER_API_KEY", "OPENROUNTER_API_KEY"):
        return "openrouter"
    return "openai"


def _build_openrouter_chat_model(default_model: str | None = None) -> ChatOpenAI:
    api_key = _get_env_var("OPENROUTER_API_KEY", "OPENROUNTER_API_KEY")
    if not api_key:
        raise ValueError(
            "OpenRouter API key is not set. Provide OPENROUTER_API_KEY to enable the fallback provider."
        )
    base_url = os.getenv("OPENROUTER_BASE_URL", "https://openrouter.ai/api/v1")
    model = default_model or os.getenv("OPENROUTER_MODEL", "openrouter/sherlock-think-alpha")
    return ChatOpenAI(model=model, api_key=api_key, base_url=base_url, temperature=0)


def get_chat_model() -> ChatOpenAI:
    provider = get_llm_provider()
    if provider == "openrouter":
        logger.info("Using OpenRouter provider (model=%s)", os.getenv("OPENROUTER_MODEL", "openrouter/sherlock-think-alpha"))
        return _build_openrouter_chat_model()

    api_key = _get_env_var("OPENAI_API_KEY")
    if api_key:
        model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
        logger.info("Using OpenAI provider (model=%s)", model)
        return ChatOpenAI(model=model, api_key=api_key, temperature=0)

    # Fallback: use OpenRouter with grok-4.1-fast when OpenAI key is missing
    logger.warning("OPENAI_API_KEY not found; falling back to OpenRouter grok-4.1-fast")
    return _build_openrouter_chat_model(default_model="openrouter/sherlock-think-alpha")


def rag_answer_from_store(vector_dir: Path, question: str, repo_summary: str = "") -> str:
    if not question.strip():
        return "Please enter a question to search your bookmarked repository."

    vectorstore = load_vector_store(vector_dir)
    if vectorstore is None:
        return "Vector store not found. Bookmark the repository first to build embeddings."

    chunk_count = None
    collection = getattr(vectorstore, "_collection", None)
    if collection:
        try:
            chunk_count = collection.count()
        except Exception as err:  # pragma: no cover - debug helper
            logger.debug("Unable to count Chroma collection: %s", err)

    logger.info(
        "RAG query: dir=%s | chunks=%s | question=%.60s",
        vector_dir,
        chunk_count,
        question.strip(),
    )

    retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
    docs = retriever.invoke(question)
    logger.info("Retriever returned %s documents", len(docs) if hasattr(docs, "__len__") else "unknown")
    if not docs:
        return "No relevant context found in the selected repository."

    context = "\n\n".join(
        f"Source: {doc.metadata.get('path', 'unknown')}\n{doc.page_content}"
        for doc in docs
    )
    llm = get_chat_model()
    prompt = (
        "You are a helpful study assistant for a GitHub repository.\n"
        "Use the repository context below as your primary source of truth.\n"
        "Prefer concise, direct answers.\n"
        "If the context is incomplete, you may draw on general knowledge, but make clear when you are doing so.\n"
        "Only say \"I don't know based on this repository\" if the question truly cannot be answered, even approximately, from the context and your general knowledge.\n\n"
        f"Repository summary:\n{repo_summary}\n\nContext:\n{context}\n\nQuestion: {question}"
    )
    response = llm.invoke(prompt)
    logger.info("RAG LLM raw response: %.120s", getattr(response, "content", str(response)).replace("\n", " "))
    return getattr(response, "content", str(response))


def qa_on_repo(repo_url: str, question: str) -> str:
    del repo_url, question
    return "Repository Q&A is now handled via bookmarked vector stores."


def _strip_markdown_code_fences(code: str) -> str:
    """Remove markdown code fences (```python ... ```) from LLM output."""
    code = code.strip()
    # Remove opening fence with optional language specifier
    if code.startswith("```"):
        first_newline = code.find("\n")
        if first_newline != -1:
            code = code[first_newline + 1:]
    # Remove closing fence
    if code.rstrip().endswith("```"):
        code = code.rstrip()[:-3].rstrip()
    return code


def _sandbox_test_experiment_code(code: str) -> Tuple[str, str]:
    # Strip markdown fences if LLM included them
    code = _strip_markdown_code_fences(code)
    buf = io.StringIO()
    ns: Dict[str, Any] = {}
    with contextlib.redirect_stdout(buf), contextlib.redirect_stderr(buf):
        try:
            exec(code, ns, ns)
        except Exception:
            return buf.getvalue(), traceback.format_exc()
    return buf.getvalue(), ""


def build_experiment_from_report(intention: str, report_markdown: str) -> Dict[str, Any]:
    intention = (intention or "").strip()
    if not intention:
        return {"code": "", "stdout": "", "error": "No intention was provided."}

    llm = get_chat_model()
    snippet = report_markdown[:8000] if report_markdown else ""
    prompt = (
        "You are a senior Python engineer. Given the following project knowledge transfer report "
        "and a user intention, write a minimal, self-contained Gradio app in Python.\n\n"
        "Constraints:\n"
        "- Use the 'gradio' library.\n"
        "- Define a function `build_experiment()` that returns a `gr.Blocks` instance.\n"
        "- Do NOT call `launch()` anywhere. The caller will handle running the app.\n"
        "- Keep the app small and focused on the intention.\n"
        "- Return only Python code, with no explanations or Markdown fences.\n\n"
        f"KNOWLEDGE TRANSFER REPORT (truncated):\n{snippet}\n\n"
        f"USER INTENTION:\n{intention}\n"
    )
    response = llm.invoke(prompt)
    code = getattr(response, "content", str(response))
    stdout, error = _sandbox_test_experiment_code(code)
    return {"code": code, "stdout": stdout, "error": error}


_YOUTUBE_TRANSCRIPT_API = "https://youtube-captions-transcript-subtitles-video-combiner.p.rapidapi.com/download-all/{video_id}"
_YOUTUBE_LANGUAGES_API = "https://youtube-captions-transcript-subtitles-video-combiner.p.rapidapi.com/languages/{video_id}"
_YOUTUBE_TRANSCRIPT_FALLBACK_API = "https://youtube-video-summarizer-gpt-ai.p.rapidapi.com/api/v1/get-transcript-v2"


def _extract_video_id(url_or_id: str) -> str:
    pattern = re.compile(r"(?:v=|/)([0-9A-Za-z_-]{11})")
    match = pattern.search(url_or_id)
    if match:
        return match.group(1)
    # Maybe the user already passed the ID.
    return url_or_id.strip()


def _parse_transcript_payload(data: Any) -> str:
    """Extract transcript text from various API response shapes."""

    transcript_text = ""

    if isinstance(data, dict):
        candidates = []
        for key in ("transcript", "subtitle", "subtitles", "caption", "captions"):
            if key in data:
                candidates.append(data[key])
        payload = data.get("data")
        if payload and isinstance(payload, dict):
            for key in ("transcript", "subtitle", "subtitles"):
                if key in payload:
                    candidates.append(payload[key])

        for candidate in candidates:
            if isinstance(candidate, str) and candidate.strip():
                transcript_text = candidate.strip()
                break
            if isinstance(candidate, list):
                joined = " ".join(str(item).strip() for item in candidate if str(item).strip())
                if joined.strip():
                    transcript_text = joined.strip()
                    break

    return transcript_text.strip()


def _call_primary_transcript_api(video_id: str, language: str, rapidapi_key: str) -> Dict[str, Any]:
    headers = {
        "x-rapidapi-key": rapidapi_key,
        "x-rapidapi-host": "youtube-captions-transcript-subtitles-video-combiner.p.rapidapi.com",
    }
    params = {"format_subtitle": "srt", "format_answer": "json", "lang": language}
    api_url = _YOUTUBE_TRANSCRIPT_API.format(video_id=video_id)

    response = requests.get(api_url, headers=headers, params=params, timeout=20)
    return {"status": response.status_code, "data": response.json() if response.content else {}, "text": response.text}


def _call_fallback_transcript_api(video_id: str, rapidapi_key: str) -> Dict[str, Any]:
    headers = {
        "x-rapidapi-key": rapidapi_key,
        "x-rapidapi-host": "youtube-video-summarizer-gpt-ai.p.rapidapi.com",
    }
    params = {"video_id": video_id, "platform": "youtube"}
    response = requests.get(_YOUTUBE_TRANSCRIPT_FALLBACK_API, headers=headers, params=params, timeout=20)
    payload = response.json() if response.content else {}
    return {"status": response.status_code, "data": payload, "text": response.text}


def fetch_youtube_transcript(url: str, lang: str = "en") -> Dict[str, Any]:
    """Fetch a YouTube transcript using RapidAPI endpoints with fallback."""

    url = (url or "").strip()
    if not url:
        return {"error": "Please provide a YouTube video URL."}

    video_id = _extract_video_id(url)
    if not video_id:
        return {"error": "Unable to determine the YouTube video ID."}

    rapidapi_key = (os.getenv("RAPID_API_KEY") or "").strip()
    if not rapidapi_key:
        return {"error": "RAPID_API_KEY is not configured. Set it in your .env file."}

    language = (lang or "en").strip() or "en"
    try:
        primary_result = _call_primary_transcript_api(video_id, language, rapidapi_key)
    except requests.RequestException as err:
        logger.error("Error calling RapidAPI transcript endpoint: %s", err)
        primary_result = {"status": 503, "data": {}, "text": str(err)}

    transcript_text = ""
    if primary_result["status"] == 200:
        transcript_text = _parse_transcript_payload(primary_result["data"]) or primary_result.get("text", "").strip()

    if primary_result["status"] == 403 or not transcript_text:
        logger.warning(
            "Primary transcript API failed (status=%s). Falling back to youtube-video-summarizer endpoint.",
            primary_result["status"],
        )
        try:
            fallback_result = _call_fallback_transcript_api(video_id, rapidapi_key)
        except requests.RequestException as err:
            logger.error("Fallback transcript endpoint error: %s", err)
            return {"error": f"Fallback transcript service failed: {err}"}

        if fallback_result["status"] != 200:
            logger.error(
                "Fallback transcript endpoint returned %s: %s",
                fallback_result["status"],
                fallback_result.get("text", ""),
            )
            return {
                "error": f"Transcript APIs failed (primary status {primary_result['status']}, fallback status {fallback_result['status']}).",
            }

        transcript_text = _parse_transcript_payload(fallback_result["data"]) or fallback_result.get("text", "").strip()

    if not transcript_text:
        return {"error": "Transcript APIs returned no textual content."}

    return {
        "url": url,
        "video_id": video_id,
        "lang": language,
        "raw_transcript": transcript_text,
    }


def summarize_youtube_chapters(transcript: str, url: str = "") -> str:
    """Summarize a YouTube transcript into chapter-style groups.



    This uses the main chat model to infer chapter titles and rough time ranges

    from the transcript text. It is intentionally lightweight and returns

    Markdown directly for display in the UI.

    """

    text = (transcript or "").strip()
    if not text:
        return "No transcript text available to generate chapter groups."

    llm = get_chat_model()
    snippet = text
    prompt = (
        "You are a helpful study assistant in teaching core concepts and ideas.",
        " Given the following YouTube transcript, divide it into a small number of",
        " high-level chapters with intricate important details that would be useful for the students to prepare for the exam and interviews.",
        "\n\nRequirements:\n",
        "- Return Markdown only, no code fences.\n",
        "- For each chapter, provide a short time range (approximate is fine), a title,",
        " and 3-6 bullet points summarizing the key ideas and concepts.\n",
        "- Prefer 5-12 chapters for a long subtitles.\n",
        f"Source URL (optional): {url or 'N/A'}\n\n",
        f"TRANSCRIPT (truncated):\n{snippet}\n",
    )
    full_prompt = "".join(prompt)
    response = llm.invoke(full_prompt)
    return getattr(response, "content", str(response))


def generate_youtube_study_notes(chapters_markdown: str, url: str = "") -> str:
    """Generate extended study and interview-oriented notes from chapter groups."""

    text = (chapters_markdown or "").strip()
    if not text:
        return "No chapter outline is available to derive study notes."

    llm = get_chat_model()
    prompt = (
        "You are an expert instructor preparing a study and interview guide based on a YouTube lecture.\n\n"
        "You are given a chapter-style outline (with headings and bullet points).\n\n"
        "Produce Markdown (no code fences) with these sections:\n"
        "1. **Key Concepts & Skills to Master** – group related ideas, describe why they matter, and point to where in the video they appear.\n"
        "2. **How to Study This Video** – concrete tips on how a learner should watch, pause, and practice to internalize the material.\n"
        "3. **Interview Preparation Checklist** – a list of specific topics, sub-skills, and example questions a candidate should be ready to answer, based only on this video.\n\n"
        "Keep the tone concise but rich in information. Do not repeat the entire outline verbatim; instead, synthesize and reorganize it for learning.\n\n"
        f"Source URL (optional): {url or 'N/A'}\n\n"
        f"CHAPTER OUTLINE:\n{text}\n"
    )
    response = llm.invoke(prompt)
    return getattr(response, "content", str(response))