Update app.py
Browse files
app.py
CHANGED
|
@@ -115,6 +115,11 @@ def normalize_recommendation_data(data: Dict) -> Dict:
|
|
| 115 |
}
|
| 116 |
|
| 117 |
return normalized
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
from datetime import date
|
| 120 |
from typing import Optional, Tuple, List, Dict, Any
|
|
@@ -222,23 +227,26 @@ def get_recommendation_with_ai(user_id, merchant, category, amount):
|
|
| 222 |
if amount <= 0:
|
| 223 |
return "❌ Please enter a valid amount greater than $0.", None
|
| 224 |
|
|
|
|
|
|
|
|
|
|
| 225 |
try:
|
| 226 |
# Get base recommendation from orchestrator
|
| 227 |
-
# Note: Your API client expects (user_id, merchant, category, amount, mcc)
|
| 228 |
result = client.get_recommendation(
|
| 229 |
user_id=user_id,
|
| 230 |
merchant=merchant,
|
| 231 |
category=category,
|
| 232 |
amount=float(amount),
|
| 233 |
-
mcc=None
|
| 234 |
)
|
| 235 |
|
| 236 |
# Check for errors
|
| 237 |
if not result.get('success'):
|
| 238 |
error_msg = result.get('error', 'Unknown error')
|
| 239 |
-
|
|
|
|
| 240 |
|
| 241 |
-
# Normalize the data
|
| 242 |
data = normalize_recommendation_data(result.get('data', {}))
|
| 243 |
|
| 244 |
# Generate LLM explanation if enabled
|
|
@@ -260,38 +268,30 @@ def get_recommendation_with_ai(user_id, merchant, category, amount):
|
|
| 260 |
print(f"LLM explanation failed: {e}")
|
| 261 |
ai_explanation = ""
|
| 262 |
|
| 263 |
-
# Format output
|
| 264 |
output = f"""
|
| 265 |
## 🎯 Recommendation for ${amount:.2f} at {merchant}
|
| 266 |
|
| 267 |
### 💳 Best Card: **{data['recommended_card']}**
|
| 268 |
|
| 269 |
**Rewards Earned:** ${data['rewards_earned']:.2f} ({data['rewards_rate']})
|
| 270 |
-
|
| 271 |
"""
|
| 272 |
|
| 273 |
-
# Add mock data indicator
|
| 274 |
if data.get('mock_data'):
|
| 275 |
output += """
|
| 276 |
> ⚠️ **Demo Mode:** Using sample data. Connect to orchestrator for real recommendations.
|
| 277 |
-
|
| 278 |
"""
|
| 279 |
|
| 280 |
-
# Add AI explanation if available
|
| 281 |
if ai_explanation:
|
| 282 |
output += f"""
|
| 283 |
### 🤖 AI Insight
|
| 284 |
-
|
| 285 |
{ai_explanation}
|
| 286 |
|
| 287 |
---
|
| 288 |
-
|
| 289 |
"""
|
| 290 |
|
| 291 |
-
# Add detailed breakdown
|
| 292 |
output += f"""
|
| 293 |
### 📊 Breakdown
|
| 294 |
-
|
| 295 |
- **Category:** {data['category']}
|
| 296 |
- **Merchant:** {data['merchant']}
|
| 297 |
- **Reasoning:** {data['reasoning']}
|
|
@@ -299,13 +299,11 @@ def get_recommendation_with_ai(user_id, merchant, category, amount):
|
|
| 299 |
- **Optimization Score:** {data['optimization_score']}/100
|
| 300 |
"""
|
| 301 |
|
| 302 |
-
# Add warnings
|
| 303 |
if data['warnings']:
|
| 304 |
output += "\n\n### ⚠️ Important Warnings\n\n"
|
| 305 |
for warning in data['warnings']:
|
| 306 |
output += f"- {warning}\n"
|
| 307 |
|
| 308 |
-
# Add alternatives
|
| 309 |
if data['alternatives']:
|
| 310 |
output += "\n\n### 🔄 Alternative Options\n\n"
|
| 311 |
for alt in data['alternatives']:
|
|
@@ -314,14 +312,13 @@ def get_recommendation_with_ai(user_id, merchant, category, amount):
|
|
| 314 |
# Create visualization
|
| 315 |
chart = create_rewards_comparison_chart(data)
|
| 316 |
|
| 317 |
-
|
| 318 |
|
| 319 |
except Exception as e:
|
| 320 |
import traceback
|
| 321 |
error_details = traceback.format_exc()
|
| 322 |
print(f"Recommendation error: {error_details}")
|
| 323 |
-
|
| 324 |
-
|
| 325 |
|
| 326 |
def create_rewards_comparison_chart(data: Dict) -> go.Figure:
|
| 327 |
"""Create rewards comparison chart with proper error handling"""
|
|
@@ -839,50 +836,59 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 839 |
)
|
| 840 |
|
| 841 |
# ===================== Analytics Update Function (ENHANCED) =====================
|
| 842 |
-
def update_analytics_with_charts(user_id: str)
|
| 843 |
"""Fetch and format analytics with charts for selected user"""
|
| 844 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
try:
|
| 846 |
# Fetch analytics data from API
|
| 847 |
result = client.get_user_analytics(user_id)
|
| 848 |
|
| 849 |
-
# DEBUG: Print what we received
|
| 850 |
-
print("=" * 60)
|
| 851 |
-
print(f"DEBUG: Analytics for {user_id}")
|
| 852 |
-
print(f"Success: {result.get('success')}")
|
| 853 |
-
print(f"Has data key: {'data' in result}")
|
| 854 |
-
if result.get('data'):
|
| 855 |
-
print(f"Data keys: {result['data'].keys()}")
|
| 856 |
-
print(f"Category breakdown length: {len(result['data'].get('category_breakdown', []))}")
|
| 857 |
-
print("=" * 60)
|
| 858 |
-
|
| 859 |
# Check if request was successful
|
| 860 |
if not result.get('success'):
|
| 861 |
error_msg = result.get('error', 'Unknown error')
|
| 862 |
-
|
| 863 |
-
|
| 864 |
f"<p>❌ Error: {error_msg}</p>",
|
| 865 |
-
|
| 866 |
"Error loading data",
|
| 867 |
"Error loading data",
|
| 868 |
"Error loading data",
|
| 869 |
f"*Error: {error_msg}*"
|
| 870 |
)
|
|
|
|
| 871 |
|
| 872 |
-
#
|
| 873 |
analytics_data = result.get('data', {})
|
| 874 |
|
| 875 |
-
# Verify we have data
|
| 876 |
if not analytics_data:
|
| 877 |
-
|
| 878 |
-
|
| 879 |
"<p>No data available</p>",
|
| 880 |
-
|
| 881 |
"No data",
|
| 882 |
"No data",
|
| 883 |
"No data",
|
| 884 |
"*No data available*"
|
| 885 |
)
|
|
|
|
| 886 |
|
| 887 |
# Import chart functions
|
| 888 |
from utils.formatters import (
|
|
@@ -894,10 +900,10 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 894 |
create_card_performance_chart
|
| 895 |
)
|
| 896 |
|
| 897 |
-
# Format text data
|
| 898 |
metrics_html, table_md, insights_md, forecast_md = format_analytics_metrics(analytics_data)
|
| 899 |
|
| 900 |
-
# Generate charts
|
| 901 |
spending_fig = create_spending_chart(analytics_data)
|
| 902 |
pie_fig = create_rewards_pie_chart(analytics_data)
|
| 903 |
gauge_fig = create_optimization_gauge(analytics_data)
|
|
@@ -908,17 +914,17 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 908 |
from datetime import datetime
|
| 909 |
status = f"*Analytics updated for {user_id} at {datetime.now().strftime('%I:%M %p')}*"
|
| 910 |
|
| 911 |
-
|
| 912 |
-
metrics_html,
|
| 913 |
-
spending_fig,
|
| 914 |
-
gauge_fig,
|
| 915 |
-
pie_fig,
|
| 916 |
-
performance_fig,
|
| 917 |
-
trend_fig,
|
| 918 |
-
table_md,
|
| 919 |
-
insights_md,
|
| 920 |
-
forecast_md,
|
| 921 |
-
status
|
| 922 |
)
|
| 923 |
|
| 924 |
except Exception as e:
|
|
@@ -928,18 +934,17 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 928 |
print(error_msg)
|
| 929 |
print(error_details)
|
| 930 |
|
| 931 |
-
|
| 932 |
-
empty_fig = create_empty_chart("Error loading chart")
|
| 933 |
|
| 934 |
-
|
| 935 |
f"<p>{error_msg}</p>",
|
| 936 |
-
|
| 937 |
"Error loading table",
|
| 938 |
"Error loading insights",
|
| 939 |
"Error loading forecast",
|
| 940 |
f"*{error_msg}*"
|
| 941 |
)
|
| 942 |
-
|
| 943 |
|
| 944 |
def create_empty_chart(message: str) -> go.Figure:
|
| 945 |
"""Helper to create empty chart with message"""
|
|
@@ -1009,11 +1014,15 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 1009 |
)
|
| 1010 |
|
| 1011 |
def respond(message, chat_history, user_id):
|
| 1012 |
-
"""Handle chat responses with error handling"""
|
| 1013 |
if not message.strip():
|
| 1014 |
return "", chat_history
|
| 1015 |
|
| 1016 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1017 |
user_context = {}
|
| 1018 |
try:
|
| 1019 |
analytics = client.get_user_analytics(user_id)
|
|
@@ -1032,7 +1041,7 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 1032 |
'top_category': 'Groceries'
|
| 1033 |
}
|
| 1034 |
|
| 1035 |
-
# Generate AI response
|
| 1036 |
try:
|
| 1037 |
if config.LLM_ENABLED:
|
| 1038 |
bot_response = llm.chat_response(message, user_context, chat_history)
|
|
@@ -1043,21 +1052,7 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 1043 |
bot_response = f"I encountered an error. Please try asking your question differently."
|
| 1044 |
|
| 1045 |
chat_history.append((message, bot_response))
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
msg.submit(respond, [msg, chatbot, chat_user], [msg, chatbot])
|
| 1049 |
-
send_btn.click(respond, [msg, chatbot, chat_user], [msg, chatbot])
|
| 1050 |
-
|
| 1051 |
-
# Example questions
|
| 1052 |
-
gr.Examples(
|
| 1053 |
-
examples=[
|
| 1054 |
-
["Which card should I use at Costco?"],
|
| 1055 |
-
["How can I maximize my grocery rewards?"],
|
| 1056 |
-
["What's the best travel card for international trips?"],
|
| 1057 |
-
["Am I close to any spending caps?"],
|
| 1058 |
-
],
|
| 1059 |
-
inputs=[msg]
|
| 1060 |
-
)
|
| 1061 |
# ========== Tab 3: About ==========
|
| 1062 |
with gr.Tab("ℹ️ About"):
|
| 1063 |
gr.Markdown(
|
|
|
|
| 115 |
}
|
| 116 |
|
| 117 |
return normalized
|
| 118 |
+
|
| 119 |
+
def create_loading_state():
|
| 120 |
+
"""Create loading indicator message"""
|
| 121 |
+
return "⏳ **Loading...** Please wait while we fetch your recommendation.", None
|
| 122 |
+
|
| 123 |
|
| 124 |
from datetime import date
|
| 125 |
from typing import Optional, Tuple, List, Dict, Any
|
|
|
|
| 227 |
if amount <= 0:
|
| 228 |
return "❌ Please enter a valid amount greater than $0.", None
|
| 229 |
|
| 230 |
+
# Show loading state
|
| 231 |
+
yield "⏳ **Loading recommendation...** Analyzing your cards and transaction...", None
|
| 232 |
+
|
| 233 |
try:
|
| 234 |
# Get base recommendation from orchestrator
|
|
|
|
| 235 |
result = client.get_recommendation(
|
| 236 |
user_id=user_id,
|
| 237 |
merchant=merchant,
|
| 238 |
category=category,
|
| 239 |
amount=float(amount),
|
| 240 |
+
mcc=None
|
| 241 |
)
|
| 242 |
|
| 243 |
# Check for errors
|
| 244 |
if not result.get('success'):
|
| 245 |
error_msg = result.get('error', 'Unknown error')
|
| 246 |
+
yield f"❌ Error: {error_msg}", None
|
| 247 |
+
return
|
| 248 |
|
| 249 |
+
# Normalize the data
|
| 250 |
data = normalize_recommendation_data(result.get('data', {}))
|
| 251 |
|
| 252 |
# Generate LLM explanation if enabled
|
|
|
|
| 268 |
print(f"LLM explanation failed: {e}")
|
| 269 |
ai_explanation = ""
|
| 270 |
|
| 271 |
+
# Format output
|
| 272 |
output = f"""
|
| 273 |
## 🎯 Recommendation for ${amount:.2f} at {merchant}
|
| 274 |
|
| 275 |
### 💳 Best Card: **{data['recommended_card']}**
|
| 276 |
|
| 277 |
**Rewards Earned:** ${data['rewards_earned']:.2f} ({data['rewards_rate']})
|
|
|
|
| 278 |
"""
|
| 279 |
|
|
|
|
| 280 |
if data.get('mock_data'):
|
| 281 |
output += """
|
| 282 |
> ⚠️ **Demo Mode:** Using sample data. Connect to orchestrator for real recommendations.
|
|
|
|
| 283 |
"""
|
| 284 |
|
|
|
|
| 285 |
if ai_explanation:
|
| 286 |
output += f"""
|
| 287 |
### 🤖 AI Insight
|
|
|
|
| 288 |
{ai_explanation}
|
| 289 |
|
| 290 |
---
|
|
|
|
| 291 |
"""
|
| 292 |
|
|
|
|
| 293 |
output += f"""
|
| 294 |
### 📊 Breakdown
|
|
|
|
| 295 |
- **Category:** {data['category']}
|
| 296 |
- **Merchant:** {data['merchant']}
|
| 297 |
- **Reasoning:** {data['reasoning']}
|
|
|
|
| 299 |
- **Optimization Score:** {data['optimization_score']}/100
|
| 300 |
"""
|
| 301 |
|
|
|
|
| 302 |
if data['warnings']:
|
| 303 |
output += "\n\n### ⚠️ Important Warnings\n\n"
|
| 304 |
for warning in data['warnings']:
|
| 305 |
output += f"- {warning}\n"
|
| 306 |
|
|
|
|
| 307 |
if data['alternatives']:
|
| 308 |
output += "\n\n### 🔄 Alternative Options\n\n"
|
| 309 |
for alt in data['alternatives']:
|
|
|
|
| 312 |
# Create visualization
|
| 313 |
chart = create_rewards_comparison_chart(data)
|
| 314 |
|
| 315 |
+
yield output, chart
|
| 316 |
|
| 317 |
except Exception as e:
|
| 318 |
import traceback
|
| 319 |
error_details = traceback.format_exc()
|
| 320 |
print(f"Recommendation error: {error_details}")
|
| 321 |
+
yield f"❌ Error: {str(e)}\n\nPlease check your API connection or try again.", None
|
|
|
|
| 322 |
|
| 323 |
def create_rewards_comparison_chart(data: Dict) -> go.Figure:
|
| 324 |
"""Create rewards comparison chart with proper error handling"""
|
|
|
|
| 836 |
)
|
| 837 |
|
| 838 |
# ===================== Analytics Update Function (ENHANCED) =====================
|
| 839 |
+
def update_analytics_with_charts(user_id: str):
|
| 840 |
"""Fetch and format analytics with charts for selected user"""
|
| 841 |
|
| 842 |
+
# Show loading state first
|
| 843 |
+
empty_fig = create_empty_chart("⏳ Loading...")
|
| 844 |
+
loading_html = """
|
| 845 |
+
<div style="text-align: center; padding: 40px;">
|
| 846 |
+
<h2>⏳ Loading Analytics...</h2>
|
| 847 |
+
<p>Please wait while we fetch your data</p>
|
| 848 |
+
</div>
|
| 849 |
+
"""
|
| 850 |
+
|
| 851 |
+
yield (
|
| 852 |
+
loading_html,
|
| 853 |
+
empty_fig, empty_fig, empty_fig, empty_fig, empty_fig,
|
| 854 |
+
"⏳ Loading...",
|
| 855 |
+
"⏳ Loading...",
|
| 856 |
+
"⏳ Loading...",
|
| 857 |
+
"*Loading analytics...*"
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
try:
|
| 861 |
# Fetch analytics data from API
|
| 862 |
result = client.get_user_analytics(user_id)
|
| 863 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 864 |
# Check if request was successful
|
| 865 |
if not result.get('success'):
|
| 866 |
error_msg = result.get('error', 'Unknown error')
|
| 867 |
+
error_fig = create_empty_chart(f"Error: {error_msg}")
|
| 868 |
+
yield (
|
| 869 |
f"<p>❌ Error: {error_msg}</p>",
|
| 870 |
+
error_fig, error_fig, error_fig, error_fig, error_fig,
|
| 871 |
"Error loading data",
|
| 872 |
"Error loading data",
|
| 873 |
"Error loading data",
|
| 874 |
f"*Error: {error_msg}*"
|
| 875 |
)
|
| 876 |
+
return
|
| 877 |
|
| 878 |
+
# Extract the actual data
|
| 879 |
analytics_data = result.get('data', {})
|
| 880 |
|
|
|
|
| 881 |
if not analytics_data:
|
| 882 |
+
error_fig = create_empty_chart("No analytics data available")
|
| 883 |
+
yield (
|
| 884 |
"<p>No data available</p>",
|
| 885 |
+
error_fig, error_fig, error_fig, error_fig, error_fig,
|
| 886 |
"No data",
|
| 887 |
"No data",
|
| 888 |
"No data",
|
| 889 |
"*No data available*"
|
| 890 |
)
|
| 891 |
+
return
|
| 892 |
|
| 893 |
# Import chart functions
|
| 894 |
from utils.formatters import (
|
|
|
|
| 900 |
create_card_performance_chart
|
| 901 |
)
|
| 902 |
|
| 903 |
+
# Format text data
|
| 904 |
metrics_html, table_md, insights_md, forecast_md = format_analytics_metrics(analytics_data)
|
| 905 |
|
| 906 |
+
# Generate charts
|
| 907 |
spending_fig = create_spending_chart(analytics_data)
|
| 908 |
pie_fig = create_rewards_pie_chart(analytics_data)
|
| 909 |
gauge_fig = create_optimization_gauge(analytics_data)
|
|
|
|
| 914 |
from datetime import datetime
|
| 915 |
status = f"*Analytics updated for {user_id} at {datetime.now().strftime('%I:%M %p')}*"
|
| 916 |
|
| 917 |
+
yield (
|
| 918 |
+
metrics_html,
|
| 919 |
+
spending_fig,
|
| 920 |
+
gauge_fig,
|
| 921 |
+
pie_fig,
|
| 922 |
+
performance_fig,
|
| 923 |
+
trend_fig,
|
| 924 |
+
table_md,
|
| 925 |
+
insights_md,
|
| 926 |
+
forecast_md,
|
| 927 |
+
status
|
| 928 |
)
|
| 929 |
|
| 930 |
except Exception as e:
|
|
|
|
| 934 |
print(error_msg)
|
| 935 |
print(error_details)
|
| 936 |
|
| 937 |
+
error_fig = create_empty_chart("Error loading chart")
|
|
|
|
| 938 |
|
| 939 |
+
yield (
|
| 940 |
f"<p>{error_msg}</p>",
|
| 941 |
+
error_fig, error_fig, error_fig, error_fig, error_fig,
|
| 942 |
"Error loading table",
|
| 943 |
"Error loading insights",
|
| 944 |
"Error loading forecast",
|
| 945 |
f"*{error_msg}*"
|
| 946 |
)
|
| 947 |
+
|
| 948 |
|
| 949 |
def create_empty_chart(message: str) -> go.Figure:
|
| 950 |
"""Helper to create empty chart with message"""
|
|
|
|
| 1014 |
)
|
| 1015 |
|
| 1016 |
def respond(message, chat_history, user_id):
|
| 1017 |
+
"""Handle chat responses with error handling and loading state"""
|
| 1018 |
if not message.strip():
|
| 1019 |
return "", chat_history
|
| 1020 |
|
| 1021 |
+
# Add loading message
|
| 1022 |
+
loading_history = chat_history + [(message, "⏳ Thinking...")]
|
| 1023 |
+
yield "", loading_history
|
| 1024 |
+
|
| 1025 |
+
# Get user context
|
| 1026 |
user_context = {}
|
| 1027 |
try:
|
| 1028 |
analytics = client.get_user_analytics(user_id)
|
|
|
|
| 1041 |
'top_category': 'Groceries'
|
| 1042 |
}
|
| 1043 |
|
| 1044 |
+
# Generate AI response
|
| 1045 |
try:
|
| 1046 |
if config.LLM_ENABLED:
|
| 1047 |
bot_response = llm.chat_response(message, user_context, chat_history)
|
|
|
|
| 1052 |
bot_response = f"I encountered an error. Please try asking your question differently."
|
| 1053 |
|
| 1054 |
chat_history.append((message, bot_response))
|
| 1055 |
+
yield "", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1056 |
# ========== Tab 3: About ==========
|
| 1057 |
with gr.Tab("ℹ️ About"):
|
| 1058 |
gr.Markdown(
|