Update app.py
Browse files
app.py
CHANGED
|
@@ -188,7 +188,7 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 188 |
|
| 189 |
print(f"π KEYS: {list(result.keys())}")
|
| 190 |
|
| 191 |
-
#
|
| 192 |
card_id = result.get('recommended_card', 'Unknown')
|
| 193 |
rewards_earned = float(result.get('rewards_earned', 0))
|
| 194 |
rewards_rate = result.get('rewards_rate', 'N/A')
|
|
@@ -196,48 +196,98 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 196 |
reasoning = result.get('reasoning', 'No reasoning provided')
|
| 197 |
alternatives = result.get('alternative_options', [])
|
| 198 |
warnings = result.get('warnings', [])
|
| 199 |
-
annual_impact = result.get('annual_impact', {})
|
| 200 |
|
| 201 |
# Map card_id to card_name
|
| 202 |
card_name_map = {
|
| 203 |
'c_citi_custom_cash': 'Citi Custom Cash',
|
| 204 |
'c_amex_gold': 'American Express Gold',
|
| 205 |
'c_chase_sapphire_reserve': 'Chase Sapphire Reserve',
|
| 206 |
-
'c_chase_freedom_unlimited': 'Chase Freedom Unlimited'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
}
|
| 208 |
card_name = card_name_map.get(card_id, card_id.replace('c_', '').replace('_', ' ').title())
|
| 209 |
|
| 210 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
card_details = result.get('card_details', {})
|
| 212 |
-
reward_rate_value = card_details.get('reward_rate', 0) # e.g., 5 for 5%
|
| 213 |
-
monthly_cap = card_details.get('monthly_cap', None) # e.g., 500
|
| 214 |
-
annual_cap = card_details.get('annual_cap', None)
|
| 215 |
-
base_rate = card_details.get('base_rate', 1) # Fallback rate after cap
|
| 216 |
-
annual_fee = card_details.get('annual_fee', 0)
|
| 217 |
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
|
| 223 |
-
potential_savings = annual_impact.get('potential_savings', 0)
|
| 224 |
-
optimization_score = annual_impact.get('optimization_score', 0)
|
| 225 |
|
| 226 |
-
#
|
| 227 |
amount_float = float(amount)
|
| 228 |
|
| 229 |
-
#
|
| 230 |
frequency_map = {
|
| 231 |
'Groceries': 52, # Weekly
|
| 232 |
-
'Restaurants': 52,
|
| 233 |
-
'Gas Stations': 52,
|
| 234 |
-
'Fast Food': 52,
|
| 235 |
'Airlines': 4, # Quarterly
|
| 236 |
'Hotels': 12, # Monthly
|
| 237 |
-
'Online Shopping': 24,
|
| 238 |
-
'Entertainment': 24,
|
| 239 |
}
|
| 240 |
-
frequency = frequency_map.get(category, 26)
|
| 241 |
frequency_label = {
|
| 242 |
52: 'weekly',
|
| 243 |
26: 'bi-weekly',
|
|
@@ -248,17 +298,15 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 248 |
|
| 249 |
annual_spend = amount_float * frequency
|
| 250 |
|
| 251 |
-
#
|
| 252 |
if monthly_cap:
|
| 253 |
-
#
|
| 254 |
monthly_cap_annual = monthly_cap * 12
|
| 255 |
|
| 256 |
if annual_spend <= monthly_cap_annual:
|
| 257 |
-
# All spending is within cap
|
| 258 |
high_rate_spend = annual_spend
|
| 259 |
low_rate_spend = 0
|
| 260 |
else:
|
| 261 |
-
# Some spending exceeds cap
|
| 262 |
high_rate_spend = monthly_cap_annual
|
| 263 |
low_rate_spend = annual_spend - monthly_cap_annual
|
| 264 |
|
|
@@ -266,36 +314,16 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 266 |
low_rate_rewards = low_rate_spend * (base_rate / 100)
|
| 267 |
total_rewards = high_rate_rewards + low_rate_rewards
|
| 268 |
|
| 269 |
-
|
| 270 |
-
baseline_rewards = annual_spend * 0.01
|
| 271 |
-
net_benefit = total_rewards - baseline_rewards - annual_fee
|
| 272 |
-
|
| 273 |
-
# Build calculation table
|
| 274 |
-
calc_table = f"""
|
| 275 |
-
| Spending Tier | Annual Amount | Rate | Rewards |
|
| 276 |
|---------------|---------------|------|---------|
|
| 277 |
| First ${monthly_cap}/month | ${high_rate_spend:.2f} | {reward_rate_value}% | ${high_rate_rewards:.2f} |
|
| 278 |
| Remaining spend | ${low_rate_spend:.2f} | {base_rate}% | ${low_rate_rewards:.2f} |
|
| 279 |
| **Subtotal** | **${annual_spend:.2f}** | - | **${total_rewards:.2f}** |
|
| 280 |
| Annual fee | - | - | -${annual_fee:.2f} |
|
| 281 |
-
| **Net Rewards** | - | - | **${total_rewards - annual_fee:.2f}** |
|
| 282 |
-
"""
|
| 283 |
|
| 284 |
-
comparison_text = f"""
|
| 285 |
-
**With {card_name}:**
|
| 286 |
-
- High rate earnings: ${high_rate_rewards:.2f}
|
| 287 |
-
- Base rate earnings: ${low_rate_rewards:.2f}
|
| 288 |
-
- Annual fee: -${annual_fee:.2f}
|
| 289 |
-
- **Net total: ${total_rewards - annual_fee:.2f}/year**
|
| 290 |
-
|
| 291 |
-
**With Baseline 1% Card:**
|
| 292 |
-
- All spending at 1%: ${baseline_rewards:.2f}/year
|
| 293 |
-
|
| 294 |
-
**Net Benefit: ${net_benefit:.2f}/year**
|
| 295 |
-
"""
|
| 296 |
-
|
| 297 |
elif annual_cap:
|
| 298 |
-
#
|
| 299 |
if annual_spend <= annual_cap:
|
| 300 |
high_rate_spend = annual_spend
|
| 301 |
low_rate_spend = 0
|
|
@@ -307,83 +335,83 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 307 |
low_rate_rewards = low_rate_spend * (base_rate / 100)
|
| 308 |
total_rewards = high_rate_rewards + low_rate_rewards
|
| 309 |
|
| 310 |
-
|
| 311 |
-
net_benefit = total_rewards - baseline_rewards - annual_fee
|
| 312 |
-
|
| 313 |
-
calc_table = f"""
|
| 314 |
-
| Spending Tier | Annual Amount | Rate | Rewards |
|
| 315 |
|---------------|---------------|------|---------|
|
| 316 |
| Up to ${annual_cap:,.0f}/year | ${high_rate_spend:.2f} | {reward_rate_value}% | ${high_rate_rewards:.2f} |
|
| 317 |
| Above cap | ${low_rate_spend:.2f} | {base_rate}% | ${low_rate_rewards:.2f} |
|
| 318 |
| **Subtotal** | **${annual_spend:.2f}** | - | **${total_rewards:.2f}** |
|
| 319 |
| Annual fee | - | - | -${annual_fee:.2f} |
|
| 320 |
-
| **Net Rewards** | - | - | **${total_rewards - annual_fee:.2f}** |
|
| 321 |
-
"""
|
| 322 |
|
| 323 |
-
comparison_text = f"""
|
| 324 |
-
**With {card_name}:**
|
| 325 |
-
- High rate earnings: ${high_rate_rewards:.2f}
|
| 326 |
-
- Base rate earnings: ${low_rate_rewards:.2f}
|
| 327 |
-
- Annual fee: -${annual_fee:.2f}
|
| 328 |
-
- **Net total: ${total_rewards - annual_fee:.2f}/year**
|
| 329 |
-
|
| 330 |
-
**With Baseline 1% Card:**
|
| 331 |
-
- All spending at 1%: ${baseline_rewards:.2f}/year
|
| 332 |
-
|
| 333 |
-
**Net Benefit: ${net_benefit:.2f}/year**
|
| 334 |
-
"""
|
| 335 |
-
|
| 336 |
else:
|
| 337 |
-
# No cap - flat rate
|
| 338 |
total_rewards = annual_spend * (reward_rate_value / 100)
|
| 339 |
-
baseline_rewards = annual_spend * 0.01
|
| 340 |
-
net_benefit = total_rewards - baseline_rewards - annual_fee
|
| 341 |
|
| 342 |
-
calc_table = f"""
|
| 343 |
-
| Spending Tier | Annual Amount | Rate | Rewards |
|
| 344 |
|---------------|---------------|------|---------|
|
| 345 |
| All spending | ${annual_spend:.2f} | {reward_rate_value}% | ${total_rewards:.2f} |
|
| 346 |
| Annual fee | - | - | -${annual_fee:.2f} |
|
| 347 |
-
| **Net Rewards** | - | - | **${total_rewards - annual_fee:.2f}** |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
|
|
|
|
|
|
|
|
|
| 353 |
- Annual fee: -${annual_fee:.2f}
|
| 354 |
-
- **Net total: ${
|
| 355 |
|
| 356 |
**With Baseline 1% Card:**
|
| 357 |
- All spending at 1%: ${baseline_rewards:.2f}/year
|
| 358 |
|
| 359 |
-
**Net Benefit: ${net_benefit
|
| 360 |
-
"""
|
| 361 |
|
| 362 |
-
#
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
# Generate based on optimization_score
|
| 366 |
-
score_breakdown = {
|
| 367 |
-
'reward_rate': min(30, int(optimization_score * 0.3)),
|
| 368 |
-
'cap_availability': min(25, int(optimization_score * 0.25)),
|
| 369 |
-
'annual_fee': min(20, int(optimization_score * 0.2)),
|
| 370 |
-
'category_match': min(20, int(optimization_score * 0.2)),
|
| 371 |
-
'penalties': max(-5, int((optimization_score - 100) * 0.05))
|
| 372 |
-
}
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
**Total: {optimization_score}/100**
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
# ========== FORMAT OUTPUT ==========
|
| 386 |
-
|
| 387 |
output = f"""## π€ AI Agent Recommendation
|
| 388 |
|
| 389 |
### π³ Recommended Card: **{card_name}**
|
|
@@ -397,8 +425,7 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 397 |
|
| 398 |
{reasoning}
|
| 399 |
|
| 400 |
-
---
|
| 401 |
-
"""
|
| 402 |
|
| 403 |
# Add alternatives
|
| 404 |
if alternatives:
|
|
@@ -415,12 +442,11 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 415 |
for warning in warnings:
|
| 416 |
output += f"- {warning}\n"
|
| 417 |
|
| 418 |
-
# Add
|
| 419 |
-
|
| 420 |
-
output += f"""
|
| 421 |
### π° Annual Impact
|
| 422 |
|
| 423 |
-
- **Potential Savings:** ${
|
| 424 |
- **Optimization Score:** {optimization_score}/100
|
| 425 |
|
| 426 |
<details>
|
|
@@ -430,10 +456,11 @@ def get_recommendation_with_agent(user_id, merchant, category, amount):
|
|
| 430 |
|
| 431 |
**Step 1: Estimate Annual Spending**
|
| 432 |
|
| 433 |
-
Current transaction:
|
| 434 |
-
Category: {category}
|
| 435 |
-
Frequency assumption: {frequency_label.capitalize()}
|
| 436 |
-
Annual estimate:
|
|
|
|
| 437 |
**Step 2: Calculate Rewards with {card_name}**
|
| 438 |
|
| 439 |
{calc_table}
|
|
@@ -448,13 +475,6 @@ Annual estimate: amountfβloat:.2fatmerchantCategory:categoryFrequencyassumptio
|
|
| 448 |
|
| 449 |
{score_details}
|
| 450 |
|
| 451 |
-
**Score Ranges:**
|
| 452 |
-
- 90-100: Optimal choice β
|
| 453 |
-
- 80-89: Great choice π
|
| 454 |
-
- 70-79: Good choice π
|
| 455 |
-
- 60-69: Acceptable β οΈ
|
| 456 |
-
- <60: Suboptimal β
|
| 457 |
-
|
| 458 |
---
|
| 459 |
|
| 460 |
#### π Card Details:
|
|
@@ -466,27 +486,22 @@ Annual estimate: amountfβloat:.2fatmerchantCategory:categoryFrequencyassumptio
|
|
| 466 |
|
| 467 |
</details>
|
| 468 |
|
| 469 |
-
---
|
| 470 |
-
"""
|
| 471 |
|
| 472 |
# Add transaction details
|
| 473 |
-
output += f"""
|
| 474 |
-
### π Transaction Details:
|
| 475 |
-
|
| 476 |
- **Amount:** ${amount_float:.2f}
|
| 477 |
- **Merchant:** {merchant}
|
| 478 |
- **Category:** {category}
|
| 479 |
-
- **MCC Code:** {transaction['mcc']}
|
| 480 |
-
"""
|
| 481 |
|
| 482 |
chart = create_agent_recommendation_chart_enhanced(result)
|
| 483 |
yield output, chart
|
| 484 |
-
|
| 485 |
except Exception as e:
|
| 486 |
import traceback
|
| 487 |
print(f"β ERROR: {traceback.format_exc()}")
|
| 488 |
-
yield f"β **Error:** {str(e)}", None
|
| 489 |
-
|
| 490 |
|
| 491 |
def create_agent_recommendation_chart_enhanced(result: Dict) -> go.Figure:
|
| 492 |
try:
|
|
|
|
| 188 |
|
| 189 |
print(f"π KEYS: {list(result.keys())}")
|
| 190 |
|
| 191 |
+
# ========== EXTRACT BASIC DATA ==========
|
| 192 |
card_id = result.get('recommended_card', 'Unknown')
|
| 193 |
rewards_earned = float(result.get('rewards_earned', 0))
|
| 194 |
rewards_rate = result.get('rewards_rate', 'N/A')
|
|
|
|
| 196 |
reasoning = result.get('reasoning', 'No reasoning provided')
|
| 197 |
alternatives = result.get('alternative_options', [])
|
| 198 |
warnings = result.get('warnings', [])
|
|
|
|
| 199 |
|
| 200 |
# Map card_id to card_name
|
| 201 |
card_name_map = {
|
| 202 |
'c_citi_custom_cash': 'Citi Custom Cash',
|
| 203 |
'c_amex_gold': 'American Express Gold',
|
| 204 |
'c_chase_sapphire_reserve': 'Chase Sapphire Reserve',
|
| 205 |
+
'c_chase_freedom_unlimited': 'Chase Freedom Unlimited',
|
| 206 |
+
'c_chase_sapphire_preferred': 'Chase Sapphire Preferred',
|
| 207 |
+
'c_capital_one_venture': 'Capital One Venture',
|
| 208 |
+
'c_discover_it': 'Discover it',
|
| 209 |
+
'c_wells_fargo_active_cash': 'Wells Fargo Active Cash'
|
| 210 |
}
|
| 211 |
card_name = card_name_map.get(card_id, card_id.replace('c_', '').replace('_', ' ').title())
|
| 212 |
|
| 213 |
+
# ========== CARD DATABASE (FALLBACK) ==========
|
| 214 |
+
# If API doesn't provide card_details, use this database
|
| 215 |
+
CARD_DATABASE = {
|
| 216 |
+
'c_citi_custom_cash': {
|
| 217 |
+
'reward_rate': 5.0,
|
| 218 |
+
'monthly_cap': 500,
|
| 219 |
+
'base_rate': 1.0,
|
| 220 |
+
'annual_fee': 0,
|
| 221 |
+
'cap_type': 'monthly'
|
| 222 |
+
},
|
| 223 |
+
'c_amex_gold': {
|
| 224 |
+
'reward_rate': 4.0,
|
| 225 |
+
'annual_cap': 25000,
|
| 226 |
+
'base_rate': 1.0,
|
| 227 |
+
'annual_fee': 250,
|
| 228 |
+
'cap_type': 'annual'
|
| 229 |
+
},
|
| 230 |
+
'c_chase_sapphire_reserve': {
|
| 231 |
+
'reward_rate': 3.0,
|
| 232 |
+
'monthly_cap': None,
|
| 233 |
+
'base_rate': 3.0,
|
| 234 |
+
'annual_fee': 550,
|
| 235 |
+
'cap_type': 'none'
|
| 236 |
+
},
|
| 237 |
+
'c_chase_freedom_unlimited': {
|
| 238 |
+
'reward_rate': 1.5,
|
| 239 |
+
'monthly_cap': None,
|
| 240 |
+
'base_rate': 1.5,
|
| 241 |
+
'annual_fee': 0,
|
| 242 |
+
'cap_type': 'none'
|
| 243 |
+
},
|
| 244 |
+
'c_chase_sapphire_preferred': {
|
| 245 |
+
'reward_rate': 2.0,
|
| 246 |
+
'monthly_cap': None,
|
| 247 |
+
'base_rate': 2.0,
|
| 248 |
+
'annual_fee': 95,
|
| 249 |
+
'cap_type': 'none'
|
| 250 |
+
}
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
# ========== GET CARD DETAILS (API OR FALLBACK) ==========
|
| 254 |
card_details = result.get('card_details', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
+
if not card_details or not card_details.get('reward_rate'):
|
| 257 |
+
# Use fallback database
|
| 258 |
+
card_details = CARD_DATABASE.get(card_id, {
|
| 259 |
+
'reward_rate': 1.0,
|
| 260 |
+
'monthly_cap': None,
|
| 261 |
+
'annual_cap': None,
|
| 262 |
+
'base_rate': 1.0,
|
| 263 |
+
'annual_fee': 0,
|
| 264 |
+
'cap_type': 'none'
|
| 265 |
+
})
|
| 266 |
+
print(f"β οΈ Using fallback card details for {card_id}")
|
| 267 |
|
| 268 |
+
reward_rate_value = card_details.get('reward_rate', 1.0)
|
| 269 |
+
monthly_cap = card_details.get('monthly_cap', None)
|
| 270 |
+
annual_cap = card_details.get('annual_cap', None)
|
| 271 |
+
base_rate = card_details.get('base_rate', 1.0)
|
| 272 |
+
annual_fee = card_details.get('annual_fee', 0)
|
| 273 |
|
| 274 |
+
print(f"β
CARD DETAILS: {reward_rate_value}%, cap={monthly_cap or annual_cap}, fee=${annual_fee}")
|
|
|
|
|
|
|
| 275 |
|
| 276 |
+
# ========== CALCULATE ANNUAL PROJECTION ==========
|
| 277 |
amount_float = float(amount)
|
| 278 |
|
| 279 |
+
# Frequency assumptions by category
|
| 280 |
frequency_map = {
|
| 281 |
'Groceries': 52, # Weekly
|
| 282 |
+
'Restaurants': 52,
|
| 283 |
+
'Gas Stations': 52,
|
| 284 |
+
'Fast Food': 52,
|
| 285 |
'Airlines': 4, # Quarterly
|
| 286 |
'Hotels': 12, # Monthly
|
| 287 |
+
'Online Shopping': 24,
|
| 288 |
+
'Entertainment': 24,
|
| 289 |
}
|
| 290 |
+
frequency = frequency_map.get(category, 26)
|
| 291 |
frequency_label = {
|
| 292 |
52: 'weekly',
|
| 293 |
26: 'bi-weekly',
|
|
|
|
| 298 |
|
| 299 |
annual_spend = amount_float * frequency
|
| 300 |
|
| 301 |
+
# ========== TIERED CALCULATION ==========
|
| 302 |
if monthly_cap:
|
| 303 |
+
# Monthly cap logic (e.g., Citi Custom Cash)
|
| 304 |
monthly_cap_annual = monthly_cap * 12
|
| 305 |
|
| 306 |
if annual_spend <= monthly_cap_annual:
|
|
|
|
| 307 |
high_rate_spend = annual_spend
|
| 308 |
low_rate_spend = 0
|
| 309 |
else:
|
|
|
|
| 310 |
high_rate_spend = monthly_cap_annual
|
| 311 |
low_rate_spend = annual_spend - monthly_cap_annual
|
| 312 |
|
|
|
|
| 314 |
low_rate_rewards = low_rate_spend * (base_rate / 100)
|
| 315 |
total_rewards = high_rate_rewards + low_rate_rewards
|
| 316 |
|
| 317 |
+
calc_table = f"""| Spending Tier | Annual Amount | Rate | Rewards |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|---------------|---------------|------|---------|
|
| 319 |
| First ${monthly_cap}/month | ${high_rate_spend:.2f} | {reward_rate_value}% | ${high_rate_rewards:.2f} |
|
| 320 |
| Remaining spend | ${low_rate_spend:.2f} | {base_rate}% | ${low_rate_rewards:.2f} |
|
| 321 |
| **Subtotal** | **${annual_spend:.2f}** | - | **${total_rewards:.2f}** |
|
| 322 |
| Annual fee | - | - | -${annual_fee:.2f} |
|
| 323 |
+
| **Net Rewards** | - | - | **${total_rewards - annual_fee:.2f}** |"""
|
|
|
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
elif annual_cap:
|
| 326 |
+
# Annual cap logic (e.g., Amex Gold)
|
| 327 |
if annual_spend <= annual_cap:
|
| 328 |
high_rate_spend = annual_spend
|
| 329 |
low_rate_spend = 0
|
|
|
|
| 335 |
low_rate_rewards = low_rate_spend * (base_rate / 100)
|
| 336 |
total_rewards = high_rate_rewards + low_rate_rewards
|
| 337 |
|
| 338 |
+
calc_table = f"""| Spending Tier | Annual Amount | Rate | Rewards |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|---------------|---------------|------|---------|
|
| 340 |
| Up to ${annual_cap:,.0f}/year | ${high_rate_spend:.2f} | {reward_rate_value}% | ${high_rate_rewards:.2f} |
|
| 341 |
| Above cap | ${low_rate_spend:.2f} | {base_rate}% | ${low_rate_rewards:.2f} |
|
| 342 |
| **Subtotal** | **${annual_spend:.2f}** | - | **${total_rewards:.2f}** |
|
| 343 |
| Annual fee | - | - | -${annual_fee:.2f} |
|
| 344 |
+
| **Net Rewards** | - | - | **${total_rewards - annual_fee:.2f}** |"""
|
|
|
|
| 345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
else:
|
| 347 |
+
# No cap - flat rate
|
| 348 |
total_rewards = annual_spend * (reward_rate_value / 100)
|
|
|
|
|
|
|
| 349 |
|
| 350 |
+
calc_table = f"""| Spending Tier | Annual Amount | Rate | Rewards |
|
|
|
|
| 351 |
|---------------|---------------|------|---------|
|
| 352 |
| All spending | ${annual_spend:.2f} | {reward_rate_value}% | ${total_rewards:.2f} |
|
| 353 |
| Annual fee | - | - | -${annual_fee:.2f} |
|
| 354 |
+
| **Net Rewards** | - | - | **${total_rewards - annual_fee:.2f}** |"""
|
| 355 |
+
|
| 356 |
+
# ========== BASELINE COMPARISON ==========
|
| 357 |
+
baseline_rewards = annual_spend * 0.01
|
| 358 |
+
net_rewards = total_rewards - annual_fee
|
| 359 |
+
net_benefit = net_rewards - baseline_rewards
|
| 360 |
+
|
| 361 |
+
comparison_text = f"""**With {card_name}:**
|
| 362 |
+
- Earnings: ${total_rewards:.2f}
|
| 363 |
- Annual fee: -${annual_fee:.2f}
|
| 364 |
+
- **Net total: ${net_rewards:.2f}/year**
|
| 365 |
|
| 366 |
**With Baseline 1% Card:**
|
| 367 |
- All spending at 1%: ${baseline_rewards:.2f}/year
|
| 368 |
|
| 369 |
+
**Net Benefit: ${net_benefit:+.2f}/year** {"π" if net_benefit > 0 else "β οΈ"}"""
|
|
|
|
| 370 |
|
| 371 |
+
# ========== OPTIMIZATION SCORE ==========
|
| 372 |
+
# Calculate score based on performance
|
| 373 |
+
max_possible_rewards = annual_spend * 0.06 # Theoretical max (6%)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
if max_possible_rewards > 0:
|
| 376 |
+
performance_ratio = (net_rewards / max_possible_rewards) * 100
|
| 377 |
+
|
| 378 |
+
# Bonus for beating baseline
|
| 379 |
+
if net_rewards > baseline_rewards:
|
| 380 |
+
improvement = (net_rewards - baseline_rewards) / baseline_rewards
|
| 381 |
+
baseline_bonus = min(improvement * 20, 20)
|
| 382 |
+
else:
|
| 383 |
+
baseline_bonus = -10 # Penalty for underperforming
|
| 384 |
+
|
| 385 |
+
optimization_score = int(min(performance_ratio + baseline_bonus, 100))
|
| 386 |
+
else:
|
| 387 |
+
optimization_score = 0
|
| 388 |
+
|
| 389 |
+
# Score breakdown
|
| 390 |
+
score_breakdown = {
|
| 391 |
+
'reward_rate': min(30, int(optimization_score * 0.30)),
|
| 392 |
+
'cap_availability': min(25, int(optimization_score * 0.25)),
|
| 393 |
+
'annual_fee': min(20, int(optimization_score * 0.20)),
|
| 394 |
+
'category_match': min(20, int(optimization_score * 0.20)),
|
| 395 |
+
'penalties': max(-5, int((optimization_score - 100) * 0.05))
|
| 396 |
+
}
|
| 397 |
+
|
| 398 |
+
score_details = f"""**Score Components:**
|
| 399 |
+
- {"β
" if score_breakdown['reward_rate'] > 20 else "β οΈ"} Reward rate: **+{score_breakdown['reward_rate']} points**
|
| 400 |
+
- {"β
" if score_breakdown['cap_availability'] > 15 else "β οΈ"} Cap availability: **+{score_breakdown['cap_availability']} points**
|
| 401 |
+
- {"β
" if score_breakdown['annual_fee'] > 15 else "β οΈ"} Annual fee value: **+{score_breakdown['annual_fee']} points**
|
| 402 |
+
- {"β
" if score_breakdown['category_match'] > 15 else "β οΈ"} Category match: **+{score_breakdown['category_match']} points**
|
| 403 |
+
- {"β οΈ" if score_breakdown['penalties'] < 0 else "β
"} Limitations: **{score_breakdown['penalties']} points**
|
| 404 |
|
| 405 |
**Total: {optimization_score}/100**
|
| 406 |
+
|
| 407 |
+
**Score Ranges:**
|
| 408 |
+
- 90-100: Optimal choice β
|
| 409 |
+
- 80-89: Great choice π
|
| 410 |
+
- 70-79: Good choice π
|
| 411 |
+
- 60-69: Acceptable β οΈ
|
| 412 |
+
- <60: Suboptimal β"""
|
| 413 |
|
| 414 |
# ========== FORMAT OUTPUT ==========
|
|
|
|
| 415 |
output = f"""## π€ AI Agent Recommendation
|
| 416 |
|
| 417 |
### π³ Recommended Card: **{card_name}**
|
|
|
|
| 425 |
|
| 426 |
{reasoning}
|
| 427 |
|
| 428 |
+
---"""
|
|
|
|
| 429 |
|
| 430 |
# Add alternatives
|
| 431 |
if alternatives:
|
|
|
|
| 442 |
for warning in warnings:
|
| 443 |
output += f"- {warning}\n"
|
| 444 |
|
| 445 |
+
# Add annual impact with expandable details
|
| 446 |
+
output += f"""
|
|
|
|
| 447 |
### π° Annual Impact
|
| 448 |
|
| 449 |
+
- **Potential Savings:** ${net_benefit:.2f}/year
|
| 450 |
- **Optimization Score:** {optimization_score}/100
|
| 451 |
|
| 452 |
<details>
|
|
|
|
| 456 |
|
| 457 |
**Step 1: Estimate Annual Spending**
|
| 458 |
|
| 459 |
+
Current transaction: ${amount_float:.2f} at {merchant}
|
| 460 |
+
Category: {category}
|
| 461 |
+
Frequency assumption: {frequency_label.capitalize()}
|
| 462 |
+
Annual estimate: ${amount_float:.2f} Γ {frequency} = **${annual_spend:.2f}**
|
| 463 |
+
|
| 464 |
**Step 2: Calculate Rewards with {card_name}**
|
| 465 |
|
| 466 |
{calc_table}
|
|
|
|
| 475 |
|
| 476 |
{score_details}
|
| 477 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
---
|
| 479 |
|
| 480 |
#### π Card Details:
|
|
|
|
| 486 |
|
| 487 |
</details>
|
| 488 |
|
| 489 |
+
---"""
|
|
|
|
| 490 |
|
| 491 |
# Add transaction details
|
| 492 |
+
output += f"""### π Transaction Details:
|
|
|
|
|
|
|
| 493 |
- **Amount:** ${amount_float:.2f}
|
| 494 |
- **Merchant:** {merchant}
|
| 495 |
- **Category:** {category}
|
| 496 |
+
- **MCC Code:** {transaction['mcc']}"""
|
|
|
|
| 497 |
|
| 498 |
chart = create_agent_recommendation_chart_enhanced(result)
|
| 499 |
yield output, chart
|
| 500 |
+
|
| 501 |
except Exception as e:
|
| 502 |
import traceback
|
| 503 |
print(f"β ERROR: {traceback.format_exc()}")
|
| 504 |
+
yield f"β **Error:** {str(e)}", None
|
|
|
|
| 505 |
|
| 506 |
def create_agent_recommendation_chart_enhanced(result: Dict) -> go.Figure:
|
| 507 |
try:
|