File size: 9,670 Bytes
9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 3e477f8 1393304 9644ee8 1393304 9644ee8 3e477f8 1393304 9644ee8 1393304 9644ee8 1393304 3e477f8 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 9644ee8 1393304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageEnhance
# from ultralytics import YOLO
# import cv2
# # Load YOLO model
# model_path = "./best.pt"
# modelY = YOLO(model_path)
# modelY.to('cpu')
# # Preprocessing function
# def preprocessing(image):
# if image.mode != 'RGB':
# image = image.convert('RGB')
# image = ImageEnhance.Sharpness(image).enhance(2.0)
# image = ImageEnhance.Contrast(image).enhance(1.5)
# image = ImageEnhance.Brightness(image).enhance(0.8)
# width = 448
# aspect_ratio = image.height / image.width
# height = int(width * aspect_ratio)
# return image.resize((width, height))
# # YOLO document detection and cropping
# def detect_and_crop_document(image):
# image_np = np.array(image)
# results = modelY(image_np, conf=0.80, device='cpu')
# cropped_images = []
# predictions = []
# for result in results:
# for box in result.boxes:
# x1, y1, x2, y2 = map(int, box.xyxy[0])
# conf = int(box.conf[0] * 100) # Convert confidence to percentage
# cls = int(box.cls[0])
# class_name = modelY.names[cls].capitalize() # Capitalize class names
# cropped_image_np = image_np[y1:y2, x1:x2]
# cropped_image = Image.fromarray(cropped_image_np)
# cropped_images.append(cropped_image)
# predictions.append(f"Detected: STNK {class_name} -- (Confidence: {conf}%)")
# if not cropped_images:
# return None, "No document detected"
# return cropped_images, predictions
# # Gradio interface
# def process_image(image):
# preprocessed_image = preprocessing(image)
# cropped_images, predictions = detect_and_crop_document(preprocessed_image)
# if cropped_images:
# return cropped_images, '\n'.join(predictions)
# return None, "No document detected"
# with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo:
# gr.Markdown(
# """
# <h1 style="text-align: center; color: #4caf50;">📜 License Registration Classification</h1>
# <p style="text-align: center; font-size: 18px;">Upload an image and let the YOLO model detect and crop license documents automatically.</p>
# """
# )
# with gr.Row():
# with gr.Column(scale=1, min_width=300):
# input_image = gr.Image(type="pil", label="Upload License Image", interactive=True)
# with gr.Row():
# clear_btn = gr.Button("Clear")
# submit_btn = gr.Button("Detect Document")
# with gr.Column(scale=2):
# output_image = gr.Gallery(label="Cropped Documents", interactive=False)
# output_text = gr.Textbox(label="Detection Result", interactive=False)
# submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text])
# clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text])
# demo.launch()
import gradio as gr
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
import cv2
import os
# --- DOCUMENTATION STRINGS (English Only) ---
GUIDELINE_SETUP = """
## 1. Quick Start Guide: Setup and Run Instructions
This application uses a YOLO model to automatically detect, classify, and extract specific license registration documents (STNK).
1. **Preparation:** Ensure your image clearly shows the target license document.
2. **Upload:** Click the 'Upload License Image' box and select your image (JPG, PNG).
3. **Run:** Click the **"Detect Document"** button.
4. **Review:** The detected documents will appear in the 'Cropped Documents' gallery, and the 'Detection Result' box will show the classification and confidence score.
"""
GUIDELINE_INPUT = """
## 2. Expected Inputs and Preprocessing
| Input Field | Purpose | Requirement |
| :--- | :--- | :--- |
| **Upload License Image** | The image containing the license document you want to detect and classify. | Must be an image file (e.g., JPG, PNG). |
### Automatic Preprocessing Steps:
Before detection, the input image is automatically adjusted to enhance accuracy:
1. **Sharpness:** Increased sharpness by 2.0.
2. **Contrast:** Increased contrast by 1.5.
3. **Brightness:** Slightly reduced brightness by 0.8.
4. **Resizing:** The image is resized to a width of 448 pixels while maintaining its original aspect ratio.
"""
GUIDELINE_OUTPUT = """
## 3. Expected Outputs (Detection and Classification)
The application produces two outputs based on a successful detection:
1. **Cropped Documents (Gallery):**
* This gallery displays only the regions of the image where a license document was confidently detected (Confidence > 80%).
* If multiple documents are found, all cropped images will appear here.
2. **Detection Result (Textbox):**
* A text summary listing each detected document, including its specific class name (e.g., 'STNK Class A'), and the model's confidence level (as a percentage).
### Failure Modes:
* If "No document detected" is returned, it means the model did not find a document with a confidence level of 80% or higher, or the image quality was too poor for detection.
"""
# --- CORE LOGIC ---
# Load YOLO model
# NOTE: Ensure 'best.pt' is available in the execution directory.
model_path = "./best.pt"
try:
modelY = YOLO(model_path)
modelY.to('cpu')
except Exception as e:
print(f"Error loading model: {e}")
modelY = None
# Preprocessing function
def preprocessing(image):
if image.mode != 'RGB':
image = image.convert('RGB')
# Enhancement steps
image = ImageEnhance.Sharpness(image).enhance(2.0)
image = ImageEnhance.Contrast(image).enhance(1.5)
image = ImageEnhance.Brightness(image).enhance(0.8)
# Resizing while preserving aspect ratio
width = 448
aspect_ratio = image.height / image.width
height = int(width * aspect_ratio)
return image.resize((width, height))
# YOLO document detection and cropping
def detect_and_crop_document(image):
if modelY is None:
return [], ["Model not loaded."]
image_np = np.array(image)
# Run inference with confidence threshold 0.80
results = modelY(image_np, conf=0.80, device='cpu', verbose=False)
cropped_images = []
predictions = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = int(box.conf[0].item() * 100) # Ensure conversion to scalar for item()
cls = int(box.cls[0].item())
class_name = modelY.names.get(cls, "Unknown").capitalize()
cropped_image_np = image_np[y1:y2, x1:x2]
# Check for valid crop size before converting to PIL
if cropped_image_np.size > 0:
cropped_image = Image.fromarray(cropped_image_np)
cropped_images.append(cropped_image)
predictions.append(f"Detected: STNK {class_name} -- (Confidence: {conf}%)")
return cropped_images, predictions
# Gradio interface function
def process_image(image):
if image is None:
raise gr.Error("Please upload an image.")
preprocessed_image = preprocessing(image)
cropped_images, predictions = detect_and_crop_document(preprocessed_image)
if cropped_images:
return cropped_images, '\n'.join(predictions)
# If no documents are detected with sufficient confidence
return [], "No document detected (Confidence threshold not met or image is unclear)."
# --- GRADIO UI SETUP ---
# Define example paths (NOTE: Replace with actual paths if needed)
examples = [
["./licence2.jpg"],
["./licence.jpg"],
]
with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo:
gr.Markdown(
"""
<h1 style="color: #4caf50;">License Registration Classification</h1>
<p style="font-size: 18px;">Upload an image and let the YOLO model detect and crop license documents automatically.</p>
"""
)
# 1. GUIDELINES SECTION
with gr.Accordion("User Guidelines and Documentation", open=False):
gr.Markdown(GUIDELINE_SETUP)
gr.Markdown("---")
gr.Markdown(GUIDELINE_INPUT)
gr.Markdown("---")
gr.Markdown(GUIDELINE_OUTPUT)
gr.Markdown("---")
# 2. APPLICATION INTERFACE
with gr.Row():
with gr.Column(scale=1, min_width=300):
input_image = gr.Image(type="pil", label="Upload License Image", interactive=True)
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Detect Document")
with gr.Column(scale=2):
output_image = gr.Gallery(label="Cropped Documents", interactive=False, object_fit="contain")
output_text = gr.Textbox(label="Detection Result", interactive=False, lines=5)
submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text])
clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text, input_image], show_progress=False)
gr.Markdown("---")
# 3. EXAMPLES SECTION
gr.Markdown("## Sample Data for Testing")
gr.Examples(
examples=examples,
inputs=input_image,
outputs=[output_image, output_text],
fn=process_image,
cache_examples=False,
label="Click to load and run a sample detection.",
)
demo.queue()
demo.launch() |