Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
-
from sklearn.
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
import os
|
| 7 |
import logging
|
|
@@ -29,24 +29,69 @@ def validate_csv(df):
|
|
| 29 |
return False, f"Invalid data types: {str(e)}"
|
| 30 |
return True, ""
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def process_files(uploaded_files):
|
| 33 |
"""
|
| 34 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
| 35 |
-
Returns a dataframe, plot path, PDF path,
|
| 36 |
"""
|
| 37 |
# Log received files
|
| 38 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
| 39 |
|
| 40 |
if not uploaded_files:
|
| 41 |
logging.warning("No files uploaded.")
|
| 42 |
-
return None, None, None, "Please upload at least one valid CSV file."
|
| 43 |
|
| 44 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
| 45 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
| 46 |
|
| 47 |
if not valid_files:
|
| 48 |
logging.warning("No valid CSV files uploaded.")
|
| 49 |
-
return None, None, None, "Please upload at least one valid CSV file."
|
| 50 |
|
| 51 |
logging.info("Loading logs from uploaded files...")
|
| 52 |
all_data = []
|
|
@@ -60,15 +105,15 @@ def process_files(uploaded_files):
|
|
| 60 |
is_valid, error_msg = validate_csv(df)
|
| 61 |
if not is_valid:
|
| 62 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
| 63 |
-
return None, None, None, f"Error loading {file.name}: {error_msg}"
|
| 64 |
all_data.append(df)
|
| 65 |
except Exception as e:
|
| 66 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
| 67 |
-
return None, None, None, f"Error loading {file.name}: {str(e)}"
|
| 68 |
|
| 69 |
if not all_data:
|
| 70 |
logging.warning("No data loaded from uploaded files.")
|
| 71 |
-
return None, None, None, "No valid data found in uploaded files."
|
| 72 |
|
| 73 |
combined_df = pd.concat(all_data, ignore_index=True)
|
| 74 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
@@ -81,15 +126,15 @@ def process_files(uploaded_files):
|
|
| 81 |
logging.info("Usage plot generated successfully.")
|
| 82 |
else:
|
| 83 |
logging.error("Failed to generate usage plot.")
|
| 84 |
-
return combined_df, None, None, "Failed to generate usage plot."
|
| 85 |
|
| 86 |
-
# Detect anomalies
|
| 87 |
-
logging.info("Detecting anomalies...")
|
| 88 |
anomaly_df = detect_anomalies(combined_df)
|
| 89 |
if anomaly_df is None:
|
| 90 |
logging.error("Failed to detect anomalies.")
|
| 91 |
else:
|
| 92 |
-
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies.")
|
| 93 |
|
| 94 |
# Process AMC expiries
|
| 95 |
logging.info("Processing AMC expiries...")
|
|
@@ -98,12 +143,17 @@ def process_files(uploaded_files):
|
|
| 98 |
# Generate PDF report
|
| 99 |
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
# Prepare output dataframe (combine original data with anomalies)
|
| 102 |
output_df = combined_df.copy()
|
| 103 |
if anomaly_df is not None:
|
| 104 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Anomaly"})
|
| 105 |
|
| 106 |
-
return output_df, plot_path, pdf_path, amc_message
|
| 107 |
|
| 108 |
def generate_usage_plot(df):
|
| 109 |
"""
|
|
@@ -141,11 +191,11 @@ def generate_usage_plot(df):
|
|
| 141 |
|
| 142 |
def detect_anomalies(df):
|
| 143 |
"""
|
| 144 |
-
Detect anomalies in usage_count using
|
| 145 |
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
|
| 146 |
"""
|
| 147 |
try:
|
| 148 |
-
model =
|
| 149 |
anomalies = model.fit_predict(df[['usage_count']].values)
|
| 150 |
anomaly_df = df.copy()
|
| 151 |
anomaly_df['anomaly'] = anomalies
|
|
@@ -165,7 +215,9 @@ def process_amc_expiries(df):
|
|
| 165 |
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
|
| 166 |
upcoming_expiries = df[df['amc_expiry'] <= threshold]
|
| 167 |
unique_devices = upcoming_expiries['equipment'].unique()
|
| 168 |
-
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}."
|
|
|
|
|
|
|
| 169 |
logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.")
|
| 170 |
return message, upcoming_expiries
|
| 171 |
except Exception as e:
|
|
@@ -189,38 +241,44 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
| 189 |
c.setFont("Helvetica", 12)
|
| 190 |
y = 720
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
# Summary
|
| 193 |
c.drawString(100, y, "Summary")
|
| 194 |
y -= 20
|
| 195 |
c.drawString(100, y, f"Total Records: {len(original_df)}")
|
| 196 |
y -= 20
|
| 197 |
-
c.drawString(100, y, f"Devices: {', '.join(original_df['equipment'].unique())}")
|
| 198 |
y -= 40
|
| 199 |
|
| 200 |
# Anomalies
|
| 201 |
-
c.drawString(100, y, "Anomaly Detection Results")
|
| 202 |
y -= 20
|
| 203 |
if anomaly_df is not None:
|
| 204 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 205 |
c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
|
| 206 |
y -= 20
|
| 207 |
if num_anomalies > 0:
|
| 208 |
-
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count']]
|
| 209 |
c.drawString(100, y, "Anomalous Records:")
|
| 210 |
y -= 20
|
| 211 |
for _, row in anomaly_records.iterrows():
|
| 212 |
-
c.drawString(100, y, f"{row['equipment']}: Usage Count = {row['usage_count']}")
|
| 213 |
y -= 20
|
| 214 |
if y < 50:
|
| 215 |
c.showPage()
|
| 216 |
y = 750
|
|
|
|
| 217 |
else:
|
| 218 |
c.drawString(100, y, "Anomaly detection failed.")
|
| 219 |
y -= 20
|
| 220 |
y -= 20
|
| 221 |
|
| 222 |
# AMC Expiries
|
| 223 |
-
c.drawString(100, y, "AMC Expiries Within 7 Days")
|
| 224 |
y -= 20
|
| 225 |
if amc_df is not None and not amc_df.empty:
|
| 226 |
c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
|
|
@@ -231,6 +289,7 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
| 231 |
if y < 50:
|
| 232 |
c.showPage()
|
| 233 |
y = 750
|
|
|
|
| 234 |
else:
|
| 235 |
c.drawString(100, y, "No AMC expiry data available.")
|
| 236 |
y -= 20
|
|
@@ -254,11 +313,13 @@ with gr.Blocks() as demo:
|
|
| 254 |
with gr.Row():
|
| 255 |
output_message = gr.Textbox(label="AMC Expiry Status")
|
| 256 |
output_pdf = gr.File(label="Download PDF Report")
|
|
|
|
|
|
|
| 257 |
|
| 258 |
process_button.click(
|
| 259 |
fn=process_files,
|
| 260 |
inputs=[file_input],
|
| 261 |
-
outputs=[output_df, output_plot, output_pdf, output_message]
|
| 262 |
)
|
| 263 |
|
| 264 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
+
from sklearn.neighbors import LocalOutlierFactor
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
import os
|
| 7 |
import logging
|
|
|
|
| 29 |
return False, f"Invalid data types: {str(e)}"
|
| 30 |
return True, ""
|
| 31 |
|
| 32 |
+
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
| 33 |
+
"""
|
| 34 |
+
Generate a detailed summary of the processing results.
|
| 35 |
+
Returns a markdown string for display in the Gradio interface.
|
| 36 |
+
"""
|
| 37 |
+
summary = ["## Processing Summary\n"]
|
| 38 |
+
|
| 39 |
+
# Total records and devices
|
| 40 |
+
total_records = len(combined_df)
|
| 41 |
+
unique_devices = combined_df['equipment'].unique()
|
| 42 |
+
summary.append(f"- **Total Records Processed**: {total_records}")
|
| 43 |
+
summary.append(f"- **Unique Devices**: {len(unique_devices)} ({', '.join(unique_devices)})\n")
|
| 44 |
+
|
| 45 |
+
# Anomalies
|
| 46 |
+
if anomaly_df is not None:
|
| 47 |
+
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 48 |
+
summary.append(f"- **Anomalies Detected**: {num_anomalies}")
|
| 49 |
+
if num_anomalies > 0:
|
| 50 |
+
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
| 51 |
+
summary.append(" **Anomalous Devices**:")
|
| 52 |
+
for _, row in anomaly_records.iterrows():
|
| 53 |
+
summary.append(f" - {row['equipment']} (Usage: {row['usage_count']}, Status: {row['status']})")
|
| 54 |
+
else:
|
| 55 |
+
summary.append(" No anomalies detected.")
|
| 56 |
+
else:
|
| 57 |
+
summary.append("- **Anomalies Detected**: Failed to detect anomalies.")
|
| 58 |
+
summary.append("\n")
|
| 59 |
+
|
| 60 |
+
# AMC Expiries
|
| 61 |
+
if amc_df is not None and not amc_df.empty:
|
| 62 |
+
unique_devices_amc = amc_df['equipment'].unique()
|
| 63 |
+
summary.append(f"- **Devices with Upcoming AMC Expiries (within 7 days)**: {len(unique_devices_amc)}")
|
| 64 |
+
summary.append(" **Details**:")
|
| 65 |
+
for _, row in amc_df.iterrows():
|
| 66 |
+
summary.append(f" - {row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}")
|
| 67 |
+
else:
|
| 68 |
+
summary.append("- **Devices with Upcoming AMC Expiries**: None")
|
| 69 |
+
summary.append("\n")
|
| 70 |
+
|
| 71 |
+
# Plot and PDF
|
| 72 |
+
summary.append("- **Usage Plot**: " + ("Generated successfully." if plot_path else "Failed to generate."))
|
| 73 |
+
summary.append("- **PDF Report**: " + ("Available for download." if pdf_path else "Not generated."))
|
| 74 |
+
|
| 75 |
+
return "\n".join(summary)
|
| 76 |
+
|
| 77 |
def process_files(uploaded_files):
|
| 78 |
"""
|
| 79 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
| 80 |
+
Returns a dataframe, plot path, PDF path, AMC expiry message, and summary.
|
| 81 |
"""
|
| 82 |
# Log received files
|
| 83 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
| 84 |
|
| 85 |
if not uploaded_files:
|
| 86 |
logging.warning("No files uploaded.")
|
| 87 |
+
return None, None, None, "Please upload at least one valid CSV file.", "No files uploaded."
|
| 88 |
|
| 89 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
| 90 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
| 91 |
|
| 92 |
if not valid_files:
|
| 93 |
logging.warning("No valid CSV files uploaded.")
|
| 94 |
+
return None, None, None, "Please upload at least one valid CSV file.", "No valid CSV files uploaded."
|
| 95 |
|
| 96 |
logging.info("Loading logs from uploaded files...")
|
| 97 |
all_data = []
|
|
|
|
| 105 |
is_valid, error_msg = validate_csv(df)
|
| 106 |
if not is_valid:
|
| 107 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
| 108 |
+
return None, None, None, f"Error loading {file.name}: {error_msg}", f"Error: {error_msg}"
|
| 109 |
all_data.append(df)
|
| 110 |
except Exception as e:
|
| 111 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
| 112 |
+
return None, None, None, f"Error loading {file.name}: {str(e)}", f"Error: {str(e)}"
|
| 113 |
|
| 114 |
if not all_data:
|
| 115 |
logging.warning("No data loaded from uploaded files.")
|
| 116 |
+
return None, None, None, "No valid data found in uploaded files.", "No data loaded."
|
| 117 |
|
| 118 |
combined_df = pd.concat(all_data, ignore_index=True)
|
| 119 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
|
|
| 126 |
logging.info("Usage plot generated successfully.")
|
| 127 |
else:
|
| 128 |
logging.error("Failed to generate usage plot.")
|
| 129 |
+
return combined_df, None, None, "Failed to generate usage plot.", "Usage plot generation failed."
|
| 130 |
|
| 131 |
+
# Detect anomalies using Local Outlier Factor
|
| 132 |
+
logging.info("Detecting anomalies using Local Outlier Factor...")
|
| 133 |
anomaly_df = detect_anomalies(combined_df)
|
| 134 |
if anomaly_df is None:
|
| 135 |
logging.error("Failed to detect anomalies.")
|
| 136 |
else:
|
| 137 |
+
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies using Local Outlier Factor.")
|
| 138 |
|
| 139 |
# Process AMC expiries
|
| 140 |
logging.info("Processing AMC expiries...")
|
|
|
|
| 143 |
# Generate PDF report
|
| 144 |
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
| 145 |
|
| 146 |
+
# Generate summary
|
| 147 |
+
logging.info("Generating summary of results...")
|
| 148 |
+
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
|
| 149 |
+
logging.info("Summary generated successfully.")
|
| 150 |
+
|
| 151 |
# Prepare output dataframe (combine original data with anomalies)
|
| 152 |
output_df = combined_df.copy()
|
| 153 |
if anomaly_df is not None:
|
| 154 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Anomaly"})
|
| 155 |
|
| 156 |
+
return output_df, plot_path, pdf_path, amc_message, summary
|
| 157 |
|
| 158 |
def generate_usage_plot(df):
|
| 159 |
"""
|
|
|
|
| 191 |
|
| 192 |
def detect_anomalies(df):
|
| 193 |
"""
|
| 194 |
+
Detect anomalies in usage_count using Local Outlier Factor.
|
| 195 |
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
|
| 196 |
"""
|
| 197 |
try:
|
| 198 |
+
model = LocalOutlierFactor(n_neighbors=5, contamination=0.1)
|
| 199 |
anomalies = model.fit_predict(df[['usage_count']].values)
|
| 200 |
anomaly_df = df.copy()
|
| 201 |
anomaly_df['anomaly'] = anomalies
|
|
|
|
| 215 |
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
|
| 216 |
upcoming_expiries = df[df['amc_expiry'] <= threshold]
|
| 217 |
unique_devices = upcoming_expiries['equipment'].unique()
|
| 218 |
+
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}. Details: " + "; ".join(
|
| 219 |
+
[f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}" for _, row in upcoming_expiries.iterrows()]
|
| 220 |
+
)
|
| 221 |
logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.")
|
| 222 |
return message, upcoming_expiries
|
| 223 |
except Exception as e:
|
|
|
|
| 241 |
c.setFont("Helvetica", 12)
|
| 242 |
y = 720
|
| 243 |
|
| 244 |
+
# Report generated timestamp
|
| 245 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 246 |
+
c.drawString(100, y, f"Generated on: {current_time}")
|
| 247 |
+
y -= 30
|
| 248 |
+
|
| 249 |
# Summary
|
| 250 |
c.drawString(100, y, "Summary")
|
| 251 |
y -= 20
|
| 252 |
c.drawString(100, y, f"Total Records: {len(original_df)}")
|
| 253 |
y -= 20
|
| 254 |
+
c.drawString(100, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
|
| 255 |
y -= 40
|
| 256 |
|
| 257 |
# Anomalies
|
| 258 |
+
c.drawString(100, y, "Anomaly Detection Results (Using Local Outlier Factor)")
|
| 259 |
y -= 20
|
| 260 |
if anomaly_df is not None:
|
| 261 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 262 |
c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
|
| 263 |
y -= 20
|
| 264 |
if num_anomalies > 0:
|
| 265 |
+
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
| 266 |
c.drawString(100, y, "Anomalous Records:")
|
| 267 |
y -= 20
|
| 268 |
for _, row in anomaly_records.iterrows():
|
| 269 |
+
c.drawString(100, y, f"{row['equipment']}: Usage Count = {row['usage_count']}, Status = {row['status']}")
|
| 270 |
y -= 20
|
| 271 |
if y < 50:
|
| 272 |
c.showPage()
|
| 273 |
y = 750
|
| 274 |
+
c.setFont("Helvetica", 12)
|
| 275 |
else:
|
| 276 |
c.drawString(100, y, "Anomaly detection failed.")
|
| 277 |
y -= 20
|
| 278 |
y -= 20
|
| 279 |
|
| 280 |
# AMC Expiries
|
| 281 |
+
c.drawString(100, y, "AMC Expiries Within 7 Days (as of 2025-06-05)")
|
| 282 |
y -= 20
|
| 283 |
if amc_df is not None and not amc_df.empty:
|
| 284 |
c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
|
|
|
|
| 289 |
if y < 50:
|
| 290 |
c.showPage()
|
| 291 |
y = 750
|
| 292 |
+
c.setFont("Helvetica", 12)
|
| 293 |
else:
|
| 294 |
c.drawString(100, y, "No AMC expiry data available.")
|
| 295 |
y -= 20
|
|
|
|
| 313 |
with gr.Row():
|
| 314 |
output_message = gr.Textbox(label="AMC Expiry Status")
|
| 315 |
output_pdf = gr.File(label="Download PDF Report")
|
| 316 |
+
with gr.Row():
|
| 317 |
+
output_summary = gr.Markdown(label="Summary of Results")
|
| 318 |
|
| 319 |
process_button.click(
|
| 320 |
fn=process_files,
|
| 321 |
inputs=[file_input],
|
| 322 |
+
outputs=[output_df, output_plot, output_pdf, output_message, output_summary]
|
| 323 |
)
|
| 324 |
|
| 325 |
if __name__ == "__main__":
|