Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,46 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# Funkcja do obsługi czatu
|
| 14 |
def respond(message, history):
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
do_sample=True,
|
| 19 |
temperature=0.7,
|
| 20 |
top_p=0.9
|
| 21 |
)
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
# Interfejs czatu
|
| 25 |
gr.ChatInterface(respond).launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 5 |
|
| 6 |
+
MODEL = "speakleash/Bielik-1.5B-v3.0-Instruct"
|
| 7 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
+
if not HF_TOKEN:
|
| 10 |
+
raise RuntimeError(
|
| 11 |
+
"Brak HF_TOKEN. Dodaj secret 'HF_TOKEN' w ustawieniach Space (Settings → Secrets)."
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
# jawne ładowanie z tokenem (upewniamy się, że auth token jest przekazany)
|
| 15 |
+
token_kwargs = {"use_auth_token": HF_TOKEN}
|
| 16 |
+
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL, **token_kwargs)
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL, device_map="auto", **token_kwargs)
|
| 19 |
+
|
| 20 |
+
chat_pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 21 |
|
|
|
|
| 22 |
def respond(message, history):
|
| 23 |
+
# proste sklejenie kontekstu z historii (opcjonalne, można rozbudować)
|
| 24 |
+
prompt = ""
|
| 25 |
+
if history:
|
| 26 |
+
for u, b in history:
|
| 27 |
+
prompt += f"User: {u}\nAssistant: {b}\n"
|
| 28 |
+
prompt += f"User: {message}\nAssistant:"
|
| 29 |
+
|
| 30 |
+
out = chat_pipe(
|
| 31 |
+
prompt,
|
| 32 |
+
max_new_tokens=256,
|
| 33 |
do_sample=True,
|
| 34 |
temperature=0.7,
|
| 35 |
top_p=0.9
|
| 36 |
)
|
| 37 |
+
gen = out[0]["generated_text"]
|
| 38 |
+
|
| 39 |
+
# odczytanie tylko nowo wygenerowanej części (usuwamy prompt, jeśli model go powtórzył)
|
| 40 |
+
reply = gen[len(prompt):] if gen.startswith(prompt) else gen
|
| 41 |
+
|
| 42 |
+
history = history or []
|
| 43 |
+
history.append((message, reply))
|
| 44 |
+
return reply, history
|
| 45 |
|
|
|
|
| 46 |
gr.ChatInterface(respond).launch()
|