Ninjani commited on
Commit
005faa8
·
1 Parent(s): 2ff2c3d

update notebook

Browse files
Files changed (1) hide show
  1. api-template.ipynb +38 -29
api-template.ipynb CHANGED
@@ -26,6 +26,18 @@
26
  "## Run inference via predict endpoint"
27
  ]
28
  },
 
 
 
 
 
 
 
 
 
 
 
 
29
  {
30
  "cell_type": "code",
31
  "execution_count": null,
@@ -36,19 +48,19 @@
36
  "from gradio_client import Client, handle_file\n",
37
  "from pathlib import Path\n",
38
  "\n",
39
- "uri = \"https://ninjani-plinder-inference-template.hf.space/\"\n",
40
  "# If running docker container locally\n",
41
  "dev_uri = \"http://localhost:7860/\"\n",
42
- "client = Client(uri)\n",
 
43
  "result = client.predict(\n",
44
  " input_sequence=\"\",\n",
45
  " input_ligand=\"CC(=O)N[C@H]1[C@H](O[C@H]2[C@H](O)[C@@H](NC(C)=O)CO[C@@H]2CO)O[C@H](CO)[C@@H](O)[C@@H]1O\",\n",
46
- " input_msa=None, # optional in this implementation\n",
47
- " input_protein=handle_file(\"./input_protein_test.cif\"),\n",
48
- " api_name=\"/predict\"\n",
49
  ")\n",
50
- "output_pdb, output_sdf, runtime = Path(result[0][0]), Path(result[0][1]), result[1]\n",
51
- "print(output_pdb, output_sdf, runtime)\n"
52
  ]
53
  },
54
  {
@@ -59,12 +71,16 @@
59
  "outputs": [],
60
  "source": [
61
  "import shutil\n",
 
62
  "\n",
63
  "local_dir = Path(\"./plinder-inference-outputs\")\n",
64
  "local_dir.mkdir(exist_ok=True, parents=True)\n",
65
  "\n",
66
  "output_pdb = Path(shutil.copy(output_pdb, local_dir))\n",
67
  "output_sdf = Path(shutil.copy(output_sdf, local_dir))\n",
 
 
 
68
  "\n",
69
  "output_pdb, output_sdf"
70
  ]
@@ -79,35 +95,20 @@
79
  },
80
  {
81
  "cell_type": "code",
82
- "execution_count": null,
83
- "id": "e5e26250-f20d-484d-84e2-320cdfef830a",
84
- "metadata": {},
85
- "outputs": [],
86
- "source": [
87
- "client = Client(uri)\n",
88
- "result = client.predict(\n",
89
- " system_id=\"4neh__1__1.B__1.H\",\n",
90
- " receptor_file=handle_file(\"./input_protein_test.cif\"),\n",
91
- " ligand_file=handle_file(\"./input_ligand_test.sdf\"),\n",
92
- " api_name=\"/get_metrics\"\n",
93
- ")\n",
94
- "metrics, runtime = result\n",
95
- "metrics"
96
- ]
97
- },
98
- {
99
- "cell_type": "code",
100
- "execution_count": null,
101
  "id": "aa37fb5c",
102
  "metadata": {},
103
  "outputs": [],
104
  "source": [
105
- "client = Client(uri)\n",
 
106
  "result = client.predict(\n",
107
  " system_id=\"4neh__1__1.B__1.H\",\n",
108
  " receptor_file=handle_file(output_pdb),\n",
109
  " ligand_file=handle_file(output_sdf),\n",
110
- " api_name=\"/get_metrics\"\n",
 
 
111
  ")\n",
112
  "metrics, runtime = result\n",
113
  "metrics"
@@ -123,8 +124,16 @@
123
  "import pandas as pd\n",
124
  "\n",
125
  "metric_df = pd.DataFrame(metrics[\"data\"], columns=metrics[\"headers\"])\n",
126
- "metric_df"
127
  ]
 
 
 
 
 
 
 
 
128
  }
129
  ],
130
  "metadata": {
 
26
  "## Run inference via predict endpoint"
27
  ]
28
  },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": 1,
32
+ "id": "980771b6",
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "uri_inference = \"https://mlsb-blackhole-models-pli.hf.space/\"\n",
37
+ "uri_inference_busted = \"https://mlsb-blackhole-models-pli-busted.hf.space/\"\n",
38
+ "uri_inference_strongdocking = \"https://mlsb-strong-docking-baseline.hf.space/\""
39
+ ]
40
+ },
41
  {
42
  "cell_type": "code",
43
  "execution_count": null,
 
48
  "from gradio_client import Client, handle_file\n",
49
  "from pathlib import Path\n",
50
  "\n",
51
+ "\n",
52
  "# If running docker container locally\n",
53
  "dev_uri = \"http://localhost:7860/\"\n",
54
+ "client = Client(uri_inference)\n",
55
+ "\n",
56
  "result = client.predict(\n",
57
  " input_sequence=\"\",\n",
58
  " input_ligand=\"CC(=O)N[C@H]1[C@H](O[C@H]2[C@H](O)[C@@H](NC(C)=O)CO[C@@H]2CO)O[C@H](CO)[C@@H](O)[C@@H]1O\",\n",
59
+ " input_msa=handle_file(\"./empty.a3m\"),\n",
60
+ " input_protein=handle_file(\"./input_protein_test.pdb\"),\n",
61
+ " api_name=\"/predict\",\n",
62
  ")\n",
63
+ "output_pdb, output_sdf, runtime = Path(result[0][0]), Path(result[0][1]), result[-1]"
 
64
  ]
65
  },
66
  {
 
71
  "outputs": [],
72
  "source": [
73
  "import shutil\n",
74
+ "from rdkit import Chem\n",
75
  "\n",
76
  "local_dir = Path(\"./plinder-inference-outputs\")\n",
77
  "local_dir.mkdir(exist_ok=True, parents=True)\n",
78
  "\n",
79
  "output_pdb = Path(shutil.copy(output_pdb, local_dir))\n",
80
  "output_sdf = Path(shutil.copy(output_sdf, local_dir))\n",
81
+ "# save first ligand\n",
82
+ "ligand = Chem.SDMolSupplier(output_sdf)[0]\n",
83
+ "Chem.SDWriter(output_sdf).write(ligand)\n",
84
  "\n",
85
  "output_pdb, output_sdf"
86
  ]
 
95
  },
96
  {
97
  "cell_type": "code",
98
+ "execution_count": 9,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  "id": "aa37fb5c",
100
  "metadata": {},
101
  "outputs": [],
102
  "source": [
103
+ "uri_eval = \"https://ninjani-plinder-inference-template.hf.space/\"\n",
104
+ "client = Client(uri_eval)\n",
105
  "result = client.predict(\n",
106
  " system_id=\"4neh__1__1.B__1.H\",\n",
107
  " receptor_file=handle_file(output_pdb),\n",
108
  " ligand_file=handle_file(output_sdf),\n",
109
+ " api_name=\"/get_metrics\",\n",
110
+ " flexible=False,\n",
111
+ " posebusters=True,\n",
112
  ")\n",
113
  "metrics, runtime = result\n",
114
  "metrics"
 
124
  "import pandas as pd\n",
125
  "\n",
126
  "metric_df = pd.DataFrame(metrics[\"data\"], columns=metrics[\"headers\"])\n",
127
+ "metric_df.T"
128
  ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": null,
133
+ "id": "4a240815",
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": []
137
  }
138
  ],
139
  "metadata": {