Spaces:
Sleeping
Sleeping
update notebook
Browse files- api-template.ipynb +38 -29
api-template.ipynb
CHANGED
|
@@ -26,6 +26,18 @@
|
|
| 26 |
"## Run inference via predict endpoint"
|
| 27 |
]
|
| 28 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
{
|
| 30 |
"cell_type": "code",
|
| 31 |
"execution_count": null,
|
|
@@ -36,19 +48,19 @@
|
|
| 36 |
"from gradio_client import Client, handle_file\n",
|
| 37 |
"from pathlib import Path\n",
|
| 38 |
"\n",
|
| 39 |
-
"
|
| 40 |
"# If running docker container locally\n",
|
| 41 |
"dev_uri = \"http://localhost:7860/\"\n",
|
| 42 |
-
"client = Client(
|
|
|
|
| 43 |
"result = client.predict(\n",
|
| 44 |
" input_sequence=\"\",\n",
|
| 45 |
" input_ligand=\"CC(=O)N[C@H]1[C@H](O[C@H]2[C@H](O)[C@@H](NC(C)=O)CO[C@@H]2CO)O[C@H](CO)[C@@H](O)[C@@H]1O\",\n",
|
| 46 |
-
" input_msa=
|
| 47 |
-
" input_protein=handle_file(\"./input_protein_test.
|
| 48 |
-
" api_name=\"/predict\"
|
| 49 |
")\n",
|
| 50 |
-
"output_pdb, output_sdf, runtime = Path(result[0][0]), Path(result[0][1]), result[1]
|
| 51 |
-
"print(output_pdb, output_sdf, runtime)\n"
|
| 52 |
]
|
| 53 |
},
|
| 54 |
{
|
|
@@ -59,12 +71,16 @@
|
|
| 59 |
"outputs": [],
|
| 60 |
"source": [
|
| 61 |
"import shutil\n",
|
|
|
|
| 62 |
"\n",
|
| 63 |
"local_dir = Path(\"./plinder-inference-outputs\")\n",
|
| 64 |
"local_dir.mkdir(exist_ok=True, parents=True)\n",
|
| 65 |
"\n",
|
| 66 |
"output_pdb = Path(shutil.copy(output_pdb, local_dir))\n",
|
| 67 |
"output_sdf = Path(shutil.copy(output_sdf, local_dir))\n",
|
|
|
|
|
|
|
|
|
|
| 68 |
"\n",
|
| 69 |
"output_pdb, output_sdf"
|
| 70 |
]
|
|
@@ -79,35 +95,20 @@
|
|
| 79 |
},
|
| 80 |
{
|
| 81 |
"cell_type": "code",
|
| 82 |
-
"execution_count":
|
| 83 |
-
"id": "e5e26250-f20d-484d-84e2-320cdfef830a",
|
| 84 |
-
"metadata": {},
|
| 85 |
-
"outputs": [],
|
| 86 |
-
"source": [
|
| 87 |
-
"client = Client(uri)\n",
|
| 88 |
-
"result = client.predict(\n",
|
| 89 |
-
" system_id=\"4neh__1__1.B__1.H\",\n",
|
| 90 |
-
" receptor_file=handle_file(\"./input_protein_test.cif\"),\n",
|
| 91 |
-
" ligand_file=handle_file(\"./input_ligand_test.sdf\"),\n",
|
| 92 |
-
" api_name=\"/get_metrics\"\n",
|
| 93 |
-
")\n",
|
| 94 |
-
"metrics, runtime = result\n",
|
| 95 |
-
"metrics"
|
| 96 |
-
]
|
| 97 |
-
},
|
| 98 |
-
{
|
| 99 |
-
"cell_type": "code",
|
| 100 |
-
"execution_count": null,
|
| 101 |
"id": "aa37fb5c",
|
| 102 |
"metadata": {},
|
| 103 |
"outputs": [],
|
| 104 |
"source": [
|
| 105 |
-
"
|
|
|
|
| 106 |
"result = client.predict(\n",
|
| 107 |
" system_id=\"4neh__1__1.B__1.H\",\n",
|
| 108 |
" receptor_file=handle_file(output_pdb),\n",
|
| 109 |
" ligand_file=handle_file(output_sdf),\n",
|
| 110 |
-
" api_name=\"/get_metrics\"
|
|
|
|
|
|
|
| 111 |
")\n",
|
| 112 |
"metrics, runtime = result\n",
|
| 113 |
"metrics"
|
|
@@ -123,8 +124,16 @@
|
|
| 123 |
"import pandas as pd\n",
|
| 124 |
"\n",
|
| 125 |
"metric_df = pd.DataFrame(metrics[\"data\"], columns=metrics[\"headers\"])\n",
|
| 126 |
-
"metric_df"
|
| 127 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
}
|
| 129 |
],
|
| 130 |
"metadata": {
|
|
|
|
| 26 |
"## Run inference via predict endpoint"
|
| 27 |
]
|
| 28 |
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": 1,
|
| 32 |
+
"id": "980771b6",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"uri_inference = \"https://mlsb-blackhole-models-pli.hf.space/\"\n",
|
| 37 |
+
"uri_inference_busted = \"https://mlsb-blackhole-models-pli-busted.hf.space/\"\n",
|
| 38 |
+
"uri_inference_strongdocking = \"https://mlsb-strong-docking-baseline.hf.space/\""
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
{
|
| 42 |
"cell_type": "code",
|
| 43 |
"execution_count": null,
|
|
|
|
| 48 |
"from gradio_client import Client, handle_file\n",
|
| 49 |
"from pathlib import Path\n",
|
| 50 |
"\n",
|
| 51 |
+
"\n",
|
| 52 |
"# If running docker container locally\n",
|
| 53 |
"dev_uri = \"http://localhost:7860/\"\n",
|
| 54 |
+
"client = Client(uri_inference)\n",
|
| 55 |
+
"\n",
|
| 56 |
"result = client.predict(\n",
|
| 57 |
" input_sequence=\"\",\n",
|
| 58 |
" input_ligand=\"CC(=O)N[C@H]1[C@H](O[C@H]2[C@H](O)[C@@H](NC(C)=O)CO[C@@H]2CO)O[C@H](CO)[C@@H](O)[C@@H]1O\",\n",
|
| 59 |
+
" input_msa=handle_file(\"./empty.a3m\"),\n",
|
| 60 |
+
" input_protein=handle_file(\"./input_protein_test.pdb\"),\n",
|
| 61 |
+
" api_name=\"/predict\",\n",
|
| 62 |
")\n",
|
| 63 |
+
"output_pdb, output_sdf, runtime = Path(result[0][0]), Path(result[0][1]), result[-1]"
|
|
|
|
| 64 |
]
|
| 65 |
},
|
| 66 |
{
|
|
|
|
| 71 |
"outputs": [],
|
| 72 |
"source": [
|
| 73 |
"import shutil\n",
|
| 74 |
+
"from rdkit import Chem\n",
|
| 75 |
"\n",
|
| 76 |
"local_dir = Path(\"./plinder-inference-outputs\")\n",
|
| 77 |
"local_dir.mkdir(exist_ok=True, parents=True)\n",
|
| 78 |
"\n",
|
| 79 |
"output_pdb = Path(shutil.copy(output_pdb, local_dir))\n",
|
| 80 |
"output_sdf = Path(shutil.copy(output_sdf, local_dir))\n",
|
| 81 |
+
"# save first ligand\n",
|
| 82 |
+
"ligand = Chem.SDMolSupplier(output_sdf)[0]\n",
|
| 83 |
+
"Chem.SDWriter(output_sdf).write(ligand)\n",
|
| 84 |
"\n",
|
| 85 |
"output_pdb, output_sdf"
|
| 86 |
]
|
|
|
|
| 95 |
},
|
| 96 |
{
|
| 97 |
"cell_type": "code",
|
| 98 |
+
"execution_count": 9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
"id": "aa37fb5c",
|
| 100 |
"metadata": {},
|
| 101 |
"outputs": [],
|
| 102 |
"source": [
|
| 103 |
+
"uri_eval = \"https://ninjani-plinder-inference-template.hf.space/\"\n",
|
| 104 |
+
"client = Client(uri_eval)\n",
|
| 105 |
"result = client.predict(\n",
|
| 106 |
" system_id=\"4neh__1__1.B__1.H\",\n",
|
| 107 |
" receptor_file=handle_file(output_pdb),\n",
|
| 108 |
" ligand_file=handle_file(output_sdf),\n",
|
| 109 |
+
" api_name=\"/get_metrics\",\n",
|
| 110 |
+
" flexible=False,\n",
|
| 111 |
+
" posebusters=True,\n",
|
| 112 |
")\n",
|
| 113 |
"metrics, runtime = result\n",
|
| 114 |
"metrics"
|
|
|
|
| 124 |
"import pandas as pd\n",
|
| 125 |
"\n",
|
| 126 |
"metric_df = pd.DataFrame(metrics[\"data\"], columns=metrics[\"headers\"])\n",
|
| 127 |
+
"metric_df.T"
|
| 128 |
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": null,
|
| 133 |
+
"id": "4a240815",
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": []
|
| 137 |
}
|
| 138 |
],
|
| 139 |
"metadata": {
|