Spaces:
Running
on
Zero
Running
on
Zero
gaoyang07
commited on
Commit
·
48336ae
1
Parent(s):
310eabf
first init moss voice generator space demo
Browse files- .gitattributes +2 -0
- app.py +452 -0
- requirements.txt +24 -0
- text/moss_voice_generator_example_texts.jsonl +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import functools
|
| 3 |
+
import importlib.util
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import re
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
import spaces
|
| 12 |
+
except ImportError:
|
| 13 |
+
class _SpacesFallback:
|
| 14 |
+
@staticmethod
|
| 15 |
+
def GPU(*_args, **_kwargs):
|
| 16 |
+
def _decorator(func):
|
| 17 |
+
return func
|
| 18 |
+
|
| 19 |
+
return _decorator
|
| 20 |
+
|
| 21 |
+
spaces = _SpacesFallback()
|
| 22 |
+
|
| 23 |
+
import gradio as gr
|
| 24 |
+
import numpy as np
|
| 25 |
+
import torch
|
| 26 |
+
from transformers import AutoModel, AutoProcessor
|
| 27 |
+
|
| 28 |
+
# Disable the broken cuDNN SDPA backend
|
| 29 |
+
torch.backends.cuda.enable_cudnn_sdp(False)
|
| 30 |
+
# Keep these enabled as fallbacks
|
| 31 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
| 32 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
| 33 |
+
torch.backends.cuda.enable_math_sdp(True)
|
| 34 |
+
|
| 35 |
+
MODEL_PATH = "OpenMOSS-Team/MOSS-VoiceGenerator"
|
| 36 |
+
DEFAULT_ATTN_IMPLEMENTATION = "auto"
|
| 37 |
+
DEFAULT_MAX_NEW_TOKENS = 4096
|
| 38 |
+
PRELOAD_ENV_VAR = "MOSS_VOICE_GENERATOR_PRELOAD_AT_STARTUP"
|
| 39 |
+
EXAMPLE_TEXTS_JSONL_PATH = Path(__file__).resolve().parent / "text" / "moss_voice_generator_example_texts.jsonl"
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def _parse_example_id(example_id: str) -> tuple[str, int] | None:
|
| 43 |
+
matched = re.fullmatch(r"(zh|en)/(\d+)", (example_id or "").strip())
|
| 44 |
+
if matched is None:
|
| 45 |
+
return None
|
| 46 |
+
return matched.group(1), int(matched.group(2))
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def build_example_rows() -> list[tuple[str, str, str]]:
|
| 50 |
+
rows: list[tuple[str, int, str, str]] = []
|
| 51 |
+
with open(EXAMPLE_TEXTS_JSONL_PATH, "r", encoding="utf-8") as f:
|
| 52 |
+
for line in f:
|
| 53 |
+
if not line.strip():
|
| 54 |
+
continue
|
| 55 |
+
sample = json.loads(line)
|
| 56 |
+
parsed = _parse_example_id(sample.get("id", ""))
|
| 57 |
+
if parsed is None:
|
| 58 |
+
continue
|
| 59 |
+
|
| 60 |
+
language, index = parsed
|
| 61 |
+
instruction = str(sample.get("instruction", "")).strip()
|
| 62 |
+
text = str(sample.get("text", "")).strip()
|
| 63 |
+
rows.append((language, index, instruction, text))
|
| 64 |
+
|
| 65 |
+
language_order = {"zh": 0, "en": 1}
|
| 66 |
+
rows.sort(key=lambda item: (language_order.get(item[0], 99), item[1]))
|
| 67 |
+
return [(f"{language}/{index}", instruction, text) for language, index, instruction, text in rows]
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
EXAMPLE_ROWS = build_example_rows()
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def apply_example_selection(evt: gr.SelectData):
|
| 74 |
+
if evt is None or evt.index is None:
|
| 75 |
+
return gr.update(), gr.update()
|
| 76 |
+
|
| 77 |
+
if isinstance(evt.index, (tuple, list)):
|
| 78 |
+
row_idx = int(evt.index[0])
|
| 79 |
+
else:
|
| 80 |
+
row_idx = int(evt.index)
|
| 81 |
+
|
| 82 |
+
if row_idx < 0 or row_idx >= len(EXAMPLE_ROWS):
|
| 83 |
+
return gr.update(), gr.update()
|
| 84 |
+
|
| 85 |
+
_, instruction_value, text_value = EXAMPLE_ROWS[row_idx]
|
| 86 |
+
return instruction_value, text_value
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def resolve_attn_implementation(requested: str, device: torch.device, dtype: torch.dtype) -> str | None:
|
| 90 |
+
requested_norm = (requested or "").strip().lower()
|
| 91 |
+
|
| 92 |
+
if requested_norm in {"none"}:
|
| 93 |
+
return None
|
| 94 |
+
|
| 95 |
+
if requested_norm not in {"", "auto"}:
|
| 96 |
+
return requested
|
| 97 |
+
|
| 98 |
+
# Prefer FlashAttention 2 when package + device conditions are met.
|
| 99 |
+
if (
|
| 100 |
+
device.type == "cuda"
|
| 101 |
+
and importlib.util.find_spec("flash_attn") is not None
|
| 102 |
+
and dtype in {torch.float16, torch.bfloat16}
|
| 103 |
+
):
|
| 104 |
+
major, _ = torch.cuda.get_device_capability(device)
|
| 105 |
+
if major >= 8:
|
| 106 |
+
return "flash_attention_2"
|
| 107 |
+
|
| 108 |
+
# CUDA fallback: use PyTorch SDPA kernels.
|
| 109 |
+
if device.type == "cuda":
|
| 110 |
+
return "sdpa"
|
| 111 |
+
|
| 112 |
+
# CPU fallback.
|
| 113 |
+
return "eager"
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
@functools.lru_cache(maxsize=1)
|
| 117 |
+
def load_backend(model_path: str, device_str: str, attn_implementation: str):
|
| 118 |
+
device = torch.device(device_str if torch.cuda.is_available() else "cpu")
|
| 119 |
+
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
| 120 |
+
resolved_attn_implementation = resolve_attn_implementation(
|
| 121 |
+
requested=attn_implementation,
|
| 122 |
+
device=device,
|
| 123 |
+
dtype=dtype,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
processor = AutoProcessor.from_pretrained(
|
| 127 |
+
model_path,
|
| 128 |
+
trust_remote_code=True,
|
| 129 |
+
normalize_inputs=True,
|
| 130 |
+
)
|
| 131 |
+
if hasattr(processor, "audio_tokenizer"):
|
| 132 |
+
processor.audio_tokenizer = processor.audio_tokenizer.to(device)
|
| 133 |
+
processor.audio_tokenizer.eval()
|
| 134 |
+
|
| 135 |
+
model_kwargs = {
|
| 136 |
+
"trust_remote_code": True,
|
| 137 |
+
"torch_dtype": dtype,
|
| 138 |
+
}
|
| 139 |
+
if resolved_attn_implementation:
|
| 140 |
+
model_kwargs["attn_implementation"] = resolved_attn_implementation
|
| 141 |
+
|
| 142 |
+
model = AutoModel.from_pretrained(model_path, **model_kwargs).to(device)
|
| 143 |
+
model.eval()
|
| 144 |
+
|
| 145 |
+
sample_rate = int(getattr(processor.model_config, "sampling_rate", 24000))
|
| 146 |
+
return model, processor, device, sample_rate
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def build_conversation(text: str, instruction: str, processor):
|
| 150 |
+
text = (text or "").strip()
|
| 151 |
+
instruction = (instruction or "").strip()
|
| 152 |
+
if not text:
|
| 153 |
+
raise ValueError("Please enter text to synthesize.")
|
| 154 |
+
if not instruction:
|
| 155 |
+
raise ValueError("Please enter a voice instruction.")
|
| 156 |
+
|
| 157 |
+
return [[processor.build_user_message(text=text, instruction=instruction)]]
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@spaces.GPU(duration=180)
|
| 161 |
+
def run_inference(
|
| 162 |
+
text: str,
|
| 163 |
+
instruction: str,
|
| 164 |
+
temperature: float,
|
| 165 |
+
top_p: float,
|
| 166 |
+
top_k: int,
|
| 167 |
+
repetition_penalty: float,
|
| 168 |
+
max_new_tokens: int,
|
| 169 |
+
model_path: str,
|
| 170 |
+
device: str,
|
| 171 |
+
attn_implementation: str,
|
| 172 |
+
):
|
| 173 |
+
started_at = time.monotonic()
|
| 174 |
+
model, processor, torch_device, sample_rate = load_backend(
|
| 175 |
+
model_path=model_path,
|
| 176 |
+
device_str=device,
|
| 177 |
+
attn_implementation=attn_implementation,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
conversations = build_conversation(
|
| 181 |
+
text=text,
|
| 182 |
+
instruction=instruction,
|
| 183 |
+
processor=processor,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
batch = processor(conversations, mode="generation")
|
| 187 |
+
input_ids = batch["input_ids"].to(torch_device)
|
| 188 |
+
attention_mask = batch["attention_mask"].to(torch_device)
|
| 189 |
+
|
| 190 |
+
with torch.no_grad():
|
| 191 |
+
outputs = model.generate(
|
| 192 |
+
input_ids=input_ids,
|
| 193 |
+
attention_mask=attention_mask,
|
| 194 |
+
max_new_tokens=int(max_new_tokens),
|
| 195 |
+
audio_temperature=float(temperature),
|
| 196 |
+
audio_top_p=float(top_p),
|
| 197 |
+
audio_top_k=int(top_k),
|
| 198 |
+
audio_repetition_penalty=float(repetition_penalty),
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
messages = processor.decode(outputs)
|
| 202 |
+
if not messages or messages[0] is None:
|
| 203 |
+
raise RuntimeError("The model did not return a decodable audio result.")
|
| 204 |
+
|
| 205 |
+
audio = messages[0].audio_codes_list[0]
|
| 206 |
+
if isinstance(audio, torch.Tensor):
|
| 207 |
+
audio_np = audio.detach().float().cpu().numpy()
|
| 208 |
+
else:
|
| 209 |
+
audio_np = np.asarray(audio, dtype=np.float32)
|
| 210 |
+
|
| 211 |
+
if audio_np.ndim > 1:
|
| 212 |
+
audio_np = audio_np.reshape(-1)
|
| 213 |
+
audio_np = audio_np.astype(np.float32, copy=False)
|
| 214 |
+
|
| 215 |
+
elapsed = time.monotonic() - started_at
|
| 216 |
+
status = (
|
| 217 |
+
f"Done | elapsed: {elapsed:.2f}s | "
|
| 218 |
+
f"max_new_tokens={int(max_new_tokens)}, "
|
| 219 |
+
f"audio_temperature={float(temperature):.2f}, audio_top_p={float(top_p):.2f}, "
|
| 220 |
+
f"audio_top_k={int(top_k)}, audio_repetition_penalty={float(repetition_penalty):.2f}"
|
| 221 |
+
)
|
| 222 |
+
return (sample_rate, audio_np), status
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def build_demo(args: argparse.Namespace):
|
| 226 |
+
custom_css = """
|
| 227 |
+
:root {
|
| 228 |
+
--bg: #f6f7f8;
|
| 229 |
+
--panel: #ffffff;
|
| 230 |
+
--ink: #111418;
|
| 231 |
+
--muted: #4d5562;
|
| 232 |
+
--line: #e5e7eb;
|
| 233 |
+
--accent: #0f766e;
|
| 234 |
+
}
|
| 235 |
+
.gradio-container {
|
| 236 |
+
background: linear-gradient(180deg, #f7f8fa 0%, #f3f5f7 100%);
|
| 237 |
+
color: var(--ink);
|
| 238 |
+
}
|
| 239 |
+
.app-card {
|
| 240 |
+
border: 1px solid var(--line);
|
| 241 |
+
border-radius: 16px;
|
| 242 |
+
background: var(--panel);
|
| 243 |
+
padding: 14px;
|
| 244 |
+
}
|
| 245 |
+
.app-title {
|
| 246 |
+
font-size: 22px;
|
| 247 |
+
font-weight: 700;
|
| 248 |
+
margin-bottom: 6px;
|
| 249 |
+
letter-spacing: 0.2px;
|
| 250 |
+
}
|
| 251 |
+
.app-subtitle {
|
| 252 |
+
color: var(--muted);
|
| 253 |
+
font-size: 14px;
|
| 254 |
+
margin-bottom: 8px;
|
| 255 |
+
}
|
| 256 |
+
#output_audio {
|
| 257 |
+
padding-bottom: 12px;
|
| 258 |
+
margin-bottom: 8px;
|
| 259 |
+
overflow: hidden !important;
|
| 260 |
+
}
|
| 261 |
+
#output_audio > .wrap {
|
| 262 |
+
overflow: hidden !important;
|
| 263 |
+
}
|
| 264 |
+
#output_audio audio {
|
| 265 |
+
margin-bottom: 6px;
|
| 266 |
+
}
|
| 267 |
+
#run-btn {
|
| 268 |
+
background: var(--accent);
|
| 269 |
+
border: none;
|
| 270 |
+
}
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
with gr.Blocks(title="MOSS-VoiceGenerator Demo", css=custom_css) as demo:
|
| 274 |
+
gr.Markdown(
|
| 275 |
+
"""
|
| 276 |
+
<div class="app-card">
|
| 277 |
+
<div class="app-title">MOSS-VoiceGenerator</div>
|
| 278 |
+
<div class="app-subtitle">Design expressive voices from instruction + text without reference audio.</div>
|
| 279 |
+
</div>
|
| 280 |
+
"""
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
with gr.Row(equal_height=False):
|
| 284 |
+
with gr.Column(scale=3):
|
| 285 |
+
instruction = gr.Textbox(
|
| 286 |
+
label="Voice Instruction",
|
| 287 |
+
lines=5,
|
| 288 |
+
placeholder="Example: Warm, gentle female narrator voice with calm pacing and clear articulation.",
|
| 289 |
+
)
|
| 290 |
+
text = gr.Textbox(
|
| 291 |
+
label="Text",
|
| 292 |
+
lines=8,
|
| 293 |
+
placeholder="Enter the text content to synthesize with the instruction-defined voice.",
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
with gr.Accordion("Sampling Parameters (Audio)", open=True):
|
| 297 |
+
temperature = gr.Slider(
|
| 298 |
+
minimum=0.1,
|
| 299 |
+
maximum=3.0,
|
| 300 |
+
step=0.05,
|
| 301 |
+
value=1.5,
|
| 302 |
+
label="temperature",
|
| 303 |
+
)
|
| 304 |
+
top_p = gr.Slider(
|
| 305 |
+
minimum=0.1,
|
| 306 |
+
maximum=1.0,
|
| 307 |
+
step=0.01,
|
| 308 |
+
value=0.6,
|
| 309 |
+
label="top_p",
|
| 310 |
+
)
|
| 311 |
+
top_k = gr.Slider(
|
| 312 |
+
minimum=1,
|
| 313 |
+
maximum=200,
|
| 314 |
+
step=1,
|
| 315 |
+
value=50,
|
| 316 |
+
label="top_k",
|
| 317 |
+
)
|
| 318 |
+
repetition_penalty = gr.Slider(
|
| 319 |
+
minimum=0.8,
|
| 320 |
+
maximum=2.0,
|
| 321 |
+
step=0.05,
|
| 322 |
+
value=1.1,
|
| 323 |
+
label="repetition_penalty",
|
| 324 |
+
)
|
| 325 |
+
max_new_tokens = gr.Slider(
|
| 326 |
+
minimum=256,
|
| 327 |
+
maximum=8192,
|
| 328 |
+
step=128,
|
| 329 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
| 330 |
+
label="max_new_tokens",
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
run_btn = gr.Button("Generate Voice", variant="primary", elem_id="run-btn")
|
| 334 |
+
|
| 335 |
+
with gr.Column(scale=2):
|
| 336 |
+
output_audio = gr.Audio(label="Output Audio", type="numpy", elem_id="output_audio")
|
| 337 |
+
status = gr.Textbox(label="Status", lines=4, interactive=False)
|
| 338 |
+
examples_table = gr.Dataframe(
|
| 339 |
+
headers=["Voice Instruction", "Example Text"],
|
| 340 |
+
value=[[example_instruction, example_text] for _, example_instruction, example_text in EXAMPLE_ROWS],
|
| 341 |
+
datatype=["str", "str"],
|
| 342 |
+
row_count=(len(EXAMPLE_ROWS), "fixed"),
|
| 343 |
+
col_count=(2, "fixed"),
|
| 344 |
+
interactive=False,
|
| 345 |
+
wrap=True,
|
| 346 |
+
label="Examples (click a row to fill inputs)",
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
examples_table.select(
|
| 350 |
+
fn=apply_example_selection,
|
| 351 |
+
inputs=[],
|
| 352 |
+
outputs=[instruction, text],
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
run_btn.click(
|
| 356 |
+
fn=run_inference,
|
| 357 |
+
inputs=[
|
| 358 |
+
text,
|
| 359 |
+
instruction,
|
| 360 |
+
temperature,
|
| 361 |
+
top_p,
|
| 362 |
+
top_k,
|
| 363 |
+
repetition_penalty,
|
| 364 |
+
max_new_tokens,
|
| 365 |
+
gr.State(args.model_path),
|
| 366 |
+
gr.State(args.device),
|
| 367 |
+
gr.State(args.attn_implementation),
|
| 368 |
+
],
|
| 369 |
+
outputs=[output_audio, status],
|
| 370 |
+
)
|
| 371 |
+
return demo
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def resolve_runtime_attn(args: argparse.Namespace) -> argparse.Namespace:
|
| 375 |
+
runtime_device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
| 376 |
+
runtime_dtype = torch.bfloat16 if runtime_device.type == "cuda" else torch.float32
|
| 377 |
+
args.attn_implementation = resolve_attn_implementation(
|
| 378 |
+
requested=args.attn_implementation,
|
| 379 |
+
device=runtime_device,
|
| 380 |
+
dtype=runtime_dtype,
|
| 381 |
+
) or "none"
|
| 382 |
+
return args
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def parse_bool_env(name: str, default: bool) -> bool:
|
| 386 |
+
value = os.getenv(name)
|
| 387 |
+
if value is None:
|
| 388 |
+
return default
|
| 389 |
+
return value.strip().lower() in {"1", "true", "yes", "y", "on"}
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def parse_port(value: str | None, default: int) -> int:
|
| 393 |
+
if not value:
|
| 394 |
+
return default
|
| 395 |
+
try:
|
| 396 |
+
return int(value)
|
| 397 |
+
except ValueError:
|
| 398 |
+
return default
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def main():
|
| 402 |
+
parser = argparse.ArgumentParser(description="MOSS-VoiceGenerator Gradio Demo")
|
| 403 |
+
parser.add_argument("--model_path", type=str, default=MODEL_PATH)
|
| 404 |
+
parser.add_argument("--device", type=str, default="cuda:0")
|
| 405 |
+
parser.add_argument("--attn_implementation", type=str, default=DEFAULT_ATTN_IMPLEMENTATION)
|
| 406 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
| 407 |
+
parser.add_argument(
|
| 408 |
+
"--port",
|
| 409 |
+
type=int,
|
| 410 |
+
default=int(os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT", "7860"))),
|
| 411 |
+
)
|
| 412 |
+
parser.add_argument("--share", action="store_true")
|
| 413 |
+
args = parser.parse_args()
|
| 414 |
+
|
| 415 |
+
args.host = os.getenv("GRADIO_SERVER_NAME", args.host)
|
| 416 |
+
args.port = parse_port(os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT")), args.port)
|
| 417 |
+
args = resolve_runtime_attn(args)
|
| 418 |
+
print(f"[INFO] Using attn_implementation={args.attn_implementation}", flush=True)
|
| 419 |
+
|
| 420 |
+
preload_enabled = parse_bool_env(PRELOAD_ENV_VAR, default=not bool(os.getenv("SPACE_ID")))
|
| 421 |
+
if preload_enabled:
|
| 422 |
+
preload_started_at = time.monotonic()
|
| 423 |
+
print(
|
| 424 |
+
f"[Startup] Preloading backend: model={args.model_path}, device={args.device}, attn={args.attn_implementation}",
|
| 425 |
+
flush=True,
|
| 426 |
+
)
|
| 427 |
+
load_backend(
|
| 428 |
+
model_path=args.model_path,
|
| 429 |
+
device_str=args.device,
|
| 430 |
+
attn_implementation=args.attn_implementation,
|
| 431 |
+
)
|
| 432 |
+
print(
|
| 433 |
+
f"[Startup] Backend preload finished in {time.monotonic() - preload_started_at:.2f}s",
|
| 434 |
+
flush=True,
|
| 435 |
+
)
|
| 436 |
+
else:
|
| 437 |
+
print(
|
| 438 |
+
f"[Startup] Skipping preload (set {PRELOAD_ENV_VAR}=1 to enable).",
|
| 439 |
+
flush=True,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
demo = build_demo(args)
|
| 443 |
+
demo.queue(max_size=16, default_concurrency_limit=1).launch(
|
| 444 |
+
server_name=args.host,
|
| 445 |
+
server_port=args.port,
|
| 446 |
+
share=args.share,
|
| 447 |
+
ssr_mode=False,
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
if __name__ == "__main__":
|
| 452 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.9.1
|
| 2 |
+
torchaudio==2.9.1
|
| 3 |
+
torchcodec==0.8.1
|
| 4 |
+
transformers==5.0.0
|
| 5 |
+
safetensors==0.6.2
|
| 6 |
+
numpy==2.1.0
|
| 7 |
+
orjson==3.11.4
|
| 8 |
+
tqdm==4.67.1
|
| 9 |
+
PyYAML==6.0.3
|
| 10 |
+
einops==0.8.1
|
| 11 |
+
scipy==1.16.2
|
| 12 |
+
librosa==0.11.0
|
| 13 |
+
tiktoken==0.12.0
|
| 14 |
+
soundfile==0.13.1
|
| 15 |
+
gradio==6.5.1
|
| 16 |
+
spaces
|
| 17 |
+
huggingface_hub
|
| 18 |
+
# flash-attn build/runtime deps
|
| 19 |
+
psutil
|
| 20 |
+
packaging
|
| 21 |
+
ninja
|
| 22 |
+
setuptools
|
| 23 |
+
wheel
|
| 24 |
+
#flash_attn
|
text/moss_voice_generator_example_texts.jsonl
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"id":"zh/0","language":"zh","instruction":"撕心裂肺,声泪俱下的中年女性","text":"皇上,臣妾做不到啊!皇上,您就杀了臣妾吧!"}
|
| 2 |
+
{"id":"zh/1","language":"zh","instruction":"年轻女性,开头傲慢不屑,发现对方身份后秒怂,疯狂道歉,惊慌失措","text":"你谁啊,关你什么事?啊…王总,您好您好,我不知道是您……"}
|
| 3 |
+
{"id":"zh/2","language":"zh","instruction":"疲惫沙哑的老年声音缓慢抱怨,带有轻微呻吟。","text":"哎呀,我的老腰啊,这年纪大了就是不行了。"}
|
| 4 |
+
{"id":"zh/3","language":"zh","instruction":"粗犷急躁的海盗船长,语速快,语调低沉而充满命令,带着一股不容置疑的霸道。","text":"快点!把那箱金币搬过来!速度快点!别磨磨蹭蹭的!我们必须在涨潮之前离开这里,否则就来不及了!"}
|
| 5 |
+
{"id":"en/0","language":"en","instruction":"Mom scolding kid for breaking a vase, then seeing he cut himself, shifting to concern","text":"How many times have I told you not to run in the house?! You could have…… oh honey, you're bleeding! Let me see your hand…… It's okay, baby."}
|
| 6 |
+
{"id":"en/1","language":"en","instruction":"An elderly female voice, slightly nasal and soft, speaking in a frail, polite British tone, conveying subtle discomfort with gentle hesitation.","text":"Achoo! Oh dear, I do believe I'm catching a cold. This dreadful weather is just too much."}
|
| 7 |
+
{"id":"en/2","language":"en","instruction":"Little girl, innocent and curious, high-pitched and adorable","text":"Mommy, why is the sky blue? And why do birds fly? And why-"}
|
| 8 |
+
{"id":"en/3","language":"en","instruction":"Emotional pop ballad with smooth, melodic delivery, slow tempo with gentle vibrato on sustained notes, conveying hope and vulnerability.","text":"Walking down this empty street tonight, searching for a guiding light, stars above shine oh so bright, everything will be alright"}
|