Spaces:
Sleeping
Sleeping
Update app.py
Browse filesAdded semantic neighborhood and adjusted color scheme.
app.py
CHANGED
|
@@ -1,61 +1,214 @@
|
|
| 1 |
-
#
|
| 2 |
-
import
|
| 3 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
| 6 |
-
import pandas as pd
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@solara.component
|
| 19 |
def Page():
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
solara.
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
line-height: 1em;
|
| 47 |
-
left: -0.5px;
|
| 48 |
-
font-size: 0.45em"> {token}</span>{tokenizer.decode([token])}</span>"""
|
| 49 |
-
solara.Markdown(f'{spans2}')
|
| 50 |
-
solara.Markdown(f'{spans1}')
|
| 51 |
-
outputs = model.generate(tokens, max_new_tokens=1, output_scores=True, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id)
|
| 52 |
-
scores = F.softmax(outputs.scores[0], dim=-1)
|
| 53 |
-
top_10 = torch.topk(scores, 10)
|
| 54 |
-
df = pd.DataFrame()
|
| 55 |
-
df["probs"] = top_10.values[0]
|
| 56 |
-
df["probs"] = [f"{value:.2%}" for value in df["probs"].values]
|
| 57 |
-
df["next token ID"] = [top_10.indices[0][i].numpy() for i in range(10)]
|
| 58 |
-
df["predicted next token"] = [tokenizer.decode(top_10.indices[0][i]) for i in range(10)]
|
| 59 |
-
solara.Markdown("###Prediction")
|
| 60 |
-
solara.DataFrame(df, items_per_page=10, cell_actions=cell_actions)
|
| 61 |
Page()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import json
|
| 3 |
import random
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import solara
|
| 7 |
+
import pandas as pd
|
| 8 |
import torch
|
| 9 |
import torch.nn.functional as F
|
|
|
|
| 10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
|
| 12 |
+
# ---- Model (same as original Space) -----------------------------------------
|
| 13 |
+
MODEL_ID = "Qwen/Qwen3-0.6B"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
| 16 |
+
|
| 17 |
+
# ---- App state ---------------------------------------------------------------
|
| 18 |
+
text_rx = solara.reactive("twinkle, twinkle, little ")
|
| 19 |
+
top10_rx = solara.reactive(pd.DataFrame(columns=["probs", "next token ID", "predicted next token"]))
|
| 20 |
+
selected_token_id_rx = solara.reactive(None) # for neighborhood focus
|
| 21 |
+
notice_rx = solara.reactive("Enter text to see predictions.")
|
| 22 |
+
theme_css = solara.reactive("""
|
| 23 |
+
<style>
|
| 24 |
+
:root {
|
| 25 |
+
--primary: #38bdf8; /* light blue */
|
| 26 |
+
--bg: #ffffff; /* white */
|
| 27 |
+
--text: #000000; /* black */
|
| 28 |
+
--muted: #6b7280; /* gray-500 */
|
| 29 |
+
--border: #e5e7eb; /* gray-200 */
|
| 30 |
+
}
|
| 31 |
+
body { background: var(--bg); color: var(--text); }
|
| 32 |
+
h1, h2, h3 { color: var(--text); }
|
| 33 |
+
table td, table th { border-color: var(--border) !important; }
|
| 34 |
+
.solara-dataframe .MuiTableCell-root { font-size: 14px; }
|
| 35 |
+
.btn-primary { background: var(--primary); color: #000; border: 1px solid var(--primary); padding: 6px 10px; border-radius: 8px; }
|
| 36 |
+
.badge { display:inline-block; padding:2px 8px; border:1px solid var(--border); border-radius:999px; color:var(--text); }
|
| 37 |
+
</style>
|
| 38 |
+
""")
|
| 39 |
+
|
| 40 |
+
# ---- Load embedding assets (your files) --------------------------------------
|
| 41 |
+
ASSETS = Path("assets/embeddings")
|
| 42 |
+
COORDS_PATH = ASSETS / "pca_top5k_coords.json"
|
| 43 |
+
NEIGH_PATH = ASSETS / "neighbors_top5k_k40.json"
|
| 44 |
+
|
| 45 |
+
coords = {}
|
| 46 |
+
neighbors = {}
|
| 47 |
+
ids_set = set()
|
| 48 |
+
|
| 49 |
+
if COORDS_PATH.exists() and NEIGH_PATH.exists():
|
| 50 |
+
with COORDS_PATH.open("r", encoding="utf-8") as f:
|
| 51 |
+
coords = json.load(f) # {token_id: [x, y], ...}
|
| 52 |
+
with NEIGH_PATH.open("r", encoding="utf-8") as f:
|
| 53 |
+
neighbors = json.load(f) # {"neighbors": {token_id: [[nid, sim], ...]}}
|
| 54 |
+
ids_set = set(map(int, coords.keys()))
|
| 55 |
+
else:
|
| 56 |
+
notice_rx.set("Embedding files not found. Add assets/embeddings/*.json to enable the map.")
|
| 57 |
+
|
| 58 |
+
# ---- Helpers -----------------------------------------------------------------
|
| 59 |
+
def predict_top10(prompt: str) -> pd.DataFrame:
|
| 60 |
+
if not prompt:
|
| 61 |
+
return pd.DataFrame(columns=["probs", "next token ID", "predicted next token"])
|
| 62 |
+
|
| 63 |
+
tokens = tokenizer.encode(prompt, return_tensors="pt")
|
| 64 |
+
out = model.generate(
|
| 65 |
+
tokens,
|
| 66 |
+
max_new_tokens=1,
|
| 67 |
+
output_scores=True,
|
| 68 |
+
return_dict_in_generate=True,
|
| 69 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 70 |
+
do_sample=False, # greedy (deterministic)
|
| 71 |
+
temperature=0.0,
|
| 72 |
+
top_k=1,
|
| 73 |
+
top_p=1.0,
|
| 74 |
+
)
|
| 75 |
+
scores = F.softmax(out.scores[0], dim=-1) # [1, vocab]
|
| 76 |
+
top_10 = torch.topk(scores, 10)
|
| 77 |
+
|
| 78 |
+
df = pd.DataFrame()
|
| 79 |
+
df["probs"] = top_10.values[0].detach().cpu().numpy()
|
| 80 |
+
df["probs"] = [f"{p:.2%}" for p in df["probs"]]
|
| 81 |
+
ids = [int(top_10.indices[0][i].detach().cpu().item()) for i in range(10)]
|
| 82 |
+
df["next token ID"] = ids
|
| 83 |
+
df["predicted next token"] = [tokenizer.decode([i]) for i in ids]
|
| 84 |
+
return df
|
| 85 |
+
|
| 86 |
+
def get_neighbor_list(token_id: int, k: int = 18):
|
| 87 |
+
if not ids_set or token_id not in ids_set:
|
| 88 |
+
return []
|
| 89 |
+
raw = neighbors.get("neighbors", {}).get(str(token_id), [])
|
| 90 |
+
# raw item is [nid, sim]; keep top k
|
| 91 |
+
return raw[:k]
|
| 92 |
+
|
| 93 |
+
# ---- Plot (Plotly scatter) ---------------------------------------------------
|
| 94 |
+
# We generate a static "all points" scatter once, then reuse it with highlights.
|
| 95 |
+
import plotly.graph_objects as go
|
| 96 |
|
| 97 |
+
def base_scatter():
|
| 98 |
+
if not coords:
|
| 99 |
+
return go.Figure().update_layout(
|
| 100 |
+
height=440, margin=dict(l=10, r=10, t=10, b=10),
|
| 101 |
+
paper_bgcolor="white", plot_bgcolor="white",
|
| 102 |
+
)
|
| 103 |
+
# unpack coordinates
|
| 104 |
+
xs, ys, tids = [], [], []
|
| 105 |
+
for tid_str, pt in coords.items():
|
| 106 |
+
xs.append(pt[0]); ys.append(pt[1]); tids.append(int(tid_str))
|
| 107 |
+
fig = go.Figure()
|
| 108 |
+
fig.add_trace(go.Scattergl(
|
| 109 |
+
x=xs, y=ys, mode="markers",
|
| 110 |
+
marker=dict(size=3, opacity=0.85),
|
| 111 |
+
text=[f"id {t}" for t in tids],
|
| 112 |
+
hoverinfo="skip", # keep hover minimal; we’ll show neighbors explicitly
|
| 113 |
+
))
|
| 114 |
+
fig.update_layout(
|
| 115 |
+
height=440, margin=dict(l=10, r=10, t=10, b=10),
|
| 116 |
+
paper_bgcolor="white", plot_bgcolor="white",
|
| 117 |
+
xaxis=dict(visible=False), yaxis=dict(visible=False),
|
| 118 |
+
)
|
| 119 |
+
return fig
|
| 120 |
|
| 121 |
+
base_fig = base_scatter()
|
| 122 |
+
fig_rx = solara.reactive(base_fig)
|
| 123 |
+
|
| 124 |
+
def highlight(token_id: int):
|
| 125 |
+
"""Return a new figure with neighbors + target highlighted."""
|
| 126 |
+
fig = base_fig.to_dict() # detach copy
|
| 127 |
+
fig = go.Figure(fig)
|
| 128 |
+
|
| 129 |
+
if not coords or token_id not in ids_set:
|
| 130 |
+
return fig
|
| 131 |
+
|
| 132 |
+
# Target
|
| 133 |
+
tx, ty = coords[str(token_id)]
|
| 134 |
+
fig.add_trace(go.Scattergl(
|
| 135 |
+
x=[tx], y=[ty], mode="markers",
|
| 136 |
+
marker=dict(size=8, line=dict(width=1), symbol="circle"),
|
| 137 |
+
name="target",
|
| 138 |
+
))
|
| 139 |
+
|
| 140 |
+
# Neighbors
|
| 141 |
+
nbrs = get_neighbor_list(token_id)
|
| 142 |
+
if nbrs:
|
| 143 |
+
nx = [coords[str(nid)][0] for nid, _ in nbrs]
|
| 144 |
+
ny = [coords[str(nid)][1] for nid, _ in nbrs]
|
| 145 |
+
fig.add_trace(go.Scattergl(
|
| 146 |
+
x=nx, y=ny, mode="markers",
|
| 147 |
+
marker=dict(size=6, symbol="circle-open"),
|
| 148 |
+
name="neighbors",
|
| 149 |
+
))
|
| 150 |
+
fig.update_layout(showlegend=False)
|
| 151 |
+
return fig
|
| 152 |
+
|
| 153 |
+
# ---- UI actions --------------------------------------------------------------
|
| 154 |
+
def on_append_cell(column, row_index):
|
| 155 |
+
# append chosen next token to the text input
|
| 156 |
+
df = top10_rx.value
|
| 157 |
+
if row_index < len(df):
|
| 158 |
+
token_id = int(df.iloc[row_index]["next token ID"])
|
| 159 |
+
decoded = tokenizer.decode([token_id])
|
| 160 |
+
text_rx.set(text_rx.value + decoded)
|
| 161 |
+
selected_token_id_rx.set(token_id)
|
| 162 |
+
# Update plot
|
| 163 |
+
fig_rx.set(highlight(token_id))
|
| 164 |
+
|
| 165 |
+
cell_actions = [solara.CellAction(icon="mdi-plus", name="Append & highlight", on_click=on_append_cell)]
|
| 166 |
+
|
| 167 |
+
def on_predict():
|
| 168 |
+
df = predict_top10(text_rx.value)
|
| 169 |
+
top10_rx.set(df)
|
| 170 |
+
notice_rx.set("Click a candidate to append it and highlight its neighborhood.")
|
| 171 |
+
# also set selected to the top-1 for convenience
|
| 172 |
+
if len(df) > 0:
|
| 173 |
+
tid = int(df.iloc[0]["next token ID"])
|
| 174 |
+
selected_token_id_rx.set(tid)
|
| 175 |
+
fig_rx.set(highlight(tid))
|
| 176 |
+
|
| 177 |
+
def on_show_neighborhood():
|
| 178 |
+
# take last token in the prompt (if any), otherwise do nothing
|
| 179 |
+
ids = tokenizer.encode(text_rx.value)
|
| 180 |
+
if ids:
|
| 181 |
+
token_id = int(ids[-1])
|
| 182 |
+
selected_token_id_rx.set(token_id)
|
| 183 |
+
fig_rx.set(highlight(token_id))
|
| 184 |
+
|
| 185 |
+
# ---- Page --------------------------------------------------------------------
|
| 186 |
@solara.component
|
| 187 |
def Page():
|
| 188 |
+
solara.HTML(tag="div", unsafe_inner_html=theme_css.value) # inject CSS theme
|
| 189 |
+
|
| 190 |
+
with solara.Column(margin=12, gap="16px"):
|
| 191 |
+
solara.Markdown("# Next-Token Predictor + Semantic Neighborhood")
|
| 192 |
+
solara.Markdown(
|
| 193 |
+
"Type text, then **Predict** to see the next-token distribution. "
|
| 194 |
+
"Click a candidate to append it and highlight its **semantic neighborhood**."
|
| 195 |
+
)
|
| 196 |
+
with solara.Row(gap="8px"):
|
| 197 |
+
solara.InputText("Enter text", value=text_rx, continuous_update=True, style={"minWidth": "520px"})
|
| 198 |
+
solara.Button("Predict", on_click=on_predict, classes=["btn-primary"])
|
| 199 |
+
solara.Button("Show neighborhood of last token", on_click=on_show_neighborhood)
|
| 200 |
+
|
| 201 |
+
solara.Markdown(f"*{notice_rx.value}*")
|
| 202 |
+
|
| 203 |
+
# Top-10 table
|
| 204 |
+
solara.Markdown("### Prediction")
|
| 205 |
+
solara.DataFrame(top10_rx.value, items_per_page=10, cell_actions=cell_actions)
|
| 206 |
+
|
| 207 |
+
# Neighborhood panel
|
| 208 |
+
solara.Markdown("### Semantic Neighborhood")
|
| 209 |
+
if not coords:
|
| 210 |
+
solara.Markdown("> Embedding map unavailable – add `assets/embeddings/*.json`.")
|
| 211 |
+
else:
|
| 212 |
+
solara.FigurePlotly(fig_rx.value)
|
| 213 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
Page()
|