Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +313 -0
- packages.txt +2 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from difflib import Differ
|
| 4 |
+
import ffmpeg
|
| 5 |
+
import os
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import time
|
| 8 |
+
import aiohttp
|
| 9 |
+
import asyncio
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
|
| 13 |
+
API_BACKEND = True
|
| 14 |
+
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
|
| 15 |
+
# MODEL = "facebook/wav2vec2-large-960h"
|
| 16 |
+
MODEL = "facebook/wav2vec2-base-960h"
|
| 17 |
+
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
|
| 18 |
+
if API_BACKEND:
|
| 19 |
+
from dotenv import load_dotenv
|
| 20 |
+
import base64
|
| 21 |
+
import asyncio
|
| 22 |
+
load_dotenv(Path(".env"))
|
| 23 |
+
|
| 24 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 25 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 26 |
+
API_URL = f'https://api-inference.huggingface.co/models/{MODEL}'
|
| 27 |
+
|
| 28 |
+
else:
|
| 29 |
+
import torch
|
| 30 |
+
from transformers import pipeline
|
| 31 |
+
|
| 32 |
+
# is cuda available?
|
| 33 |
+
cuda = torch.device(
|
| 34 |
+
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
| 35 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 36 |
+
speech_recognizer = pipeline(
|
| 37 |
+
task="automatic-speech-recognition",
|
| 38 |
+
model=f'{MODEL}',
|
| 39 |
+
tokenizer=f'{MODEL}',
|
| 40 |
+
framework="pt",
|
| 41 |
+
device=device,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
videos_out_path = Path("./videos_out")
|
| 45 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
| 46 |
+
|
| 47 |
+
samples_data = sorted(Path('examples').glob('*.json'))
|
| 48 |
+
SAMPLES = []
|
| 49 |
+
for file in samples_data:
|
| 50 |
+
with open(file) as f:
|
| 51 |
+
sample = json.load(f)
|
| 52 |
+
SAMPLES.append(sample)
|
| 53 |
+
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
|
| 54 |
+
|
| 55 |
+
total_inferences_since_reboot = 415
|
| 56 |
+
total_cuts_since_reboot = 1539
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
async def speech_to_text(video_file_path):
|
| 60 |
+
"""
|
| 61 |
+
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
|
| 62 |
+
|
| 63 |
+
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
| 64 |
+
"""
|
| 65 |
+
global total_inferences_since_reboot
|
| 66 |
+
if (video_file_path == None):
|
| 67 |
+
raise ValueError("Error no video input")
|
| 68 |
+
|
| 69 |
+
video_path = Path(video_file_path)
|
| 70 |
+
try:
|
| 71 |
+
# convert video to audio 16k using PIPE to audio_memory
|
| 72 |
+
audio_memory, _ = ffmpeg.input(video_path).output(
|
| 73 |
+
'-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
raise RuntimeError("Error converting video to audio")
|
| 76 |
+
|
| 77 |
+
ping("speech_to_text")
|
| 78 |
+
last_time = time.time()
|
| 79 |
+
if API_BACKEND:
|
| 80 |
+
# Using Inference API https://huggingface.co/inference-api
|
| 81 |
+
# try twice, because the model must be loaded
|
| 82 |
+
for i in range(10):
|
| 83 |
+
for tries in range(4):
|
| 84 |
+
print(f'Transcribing from API attempt {tries}')
|
| 85 |
+
try:
|
| 86 |
+
inference_reponse = await query_api(audio_memory)
|
| 87 |
+
print(inference_reponse)
|
| 88 |
+
transcription = inference_reponse["text"].lower()
|
| 89 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
|
| 90 |
+
for chunk in inference_reponse['chunks']]
|
| 91 |
+
|
| 92 |
+
total_inferences_since_reboot += 1
|
| 93 |
+
print("\n\ntotal_inferences_since_reboot: ",
|
| 94 |
+
total_inferences_since_reboot, "\n\n")
|
| 95 |
+
return (transcription, transcription, timestamps)
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(e)
|
| 98 |
+
if 'error' in inference_reponse and 'estimated_time' in inference_reponse:
|
| 99 |
+
wait_time = inference_reponse['estimated_time']
|
| 100 |
+
print("Waiting for model to load....", wait_time)
|
| 101 |
+
# wait for loading model
|
| 102 |
+
# 5 seconds plus for certanty
|
| 103 |
+
await asyncio.sleep(wait_time + 5.0)
|
| 104 |
+
elif 'error' in inference_reponse:
|
| 105 |
+
raise RuntimeError("Error Fetching API",
|
| 106 |
+
inference_reponse['error'])
|
| 107 |
+
else:
|
| 108 |
+
break
|
| 109 |
+
else:
|
| 110 |
+
raise RuntimeError(inference_reponse, "Error Fetching API")
|
| 111 |
+
else:
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
print(f'Transcribing via local model')
|
| 115 |
+
output = speech_recognizer(
|
| 116 |
+
audio_memory, return_timestamps="char", chunk_length_s=10, stride_length_s=(4, 2))
|
| 117 |
+
|
| 118 |
+
transcription = output["text"].lower()
|
| 119 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0].tolist(), chunk["timestamp"][1].tolist()]
|
| 120 |
+
for chunk in output['chunks']]
|
| 121 |
+
total_inferences_since_reboot += 1
|
| 122 |
+
|
| 123 |
+
print("\n\ntotal_inferences_since_reboot: ",
|
| 124 |
+
total_inferences_since_reboot, "\n\n")
|
| 125 |
+
return (transcription, transcription, timestamps)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
raise RuntimeError("Error Running inference with local model", e)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
| 131 |
+
"""
|
| 132 |
+
Given original video input, text transcript + timestamps,
|
| 133 |
+
and edit ext cuts video segments into a single video
|
| 134 |
+
"""
|
| 135 |
+
global total_cuts_since_reboot
|
| 136 |
+
|
| 137 |
+
video_path = Path(video_in)
|
| 138 |
+
video_file_name = video_path.stem
|
| 139 |
+
if (video_in == None or text_in == None or transcription == None):
|
| 140 |
+
raise ValueError("Inputs undefined")
|
| 141 |
+
|
| 142 |
+
d = Differ()
|
| 143 |
+
# compare original transcription with edit text
|
| 144 |
+
diff_chars = d.compare(transcription, text_in)
|
| 145 |
+
# remove all text aditions from diff
|
| 146 |
+
filtered = list(filter(lambda x: x[0] != '+', diff_chars))
|
| 147 |
+
|
| 148 |
+
# filter timestamps to be removed
|
| 149 |
+
# timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
|
| 150 |
+
# return diff tokes and cutted video!!
|
| 151 |
+
|
| 152 |
+
# groupping character timestamps so there are less cuts
|
| 153 |
+
idx = 0
|
| 154 |
+
grouped = {}
|
| 155 |
+
for (a, b) in zip(filtered, timestamps):
|
| 156 |
+
if a[0] != '-':
|
| 157 |
+
if idx in grouped:
|
| 158 |
+
grouped[idx].append(b)
|
| 159 |
+
else:
|
| 160 |
+
grouped[idx] = []
|
| 161 |
+
grouped[idx].append(b)
|
| 162 |
+
else:
|
| 163 |
+
idx += 1
|
| 164 |
+
|
| 165 |
+
# after grouping, gets the lower and upter start and time for each group
|
| 166 |
+
timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]
|
| 167 |
+
|
| 168 |
+
between_str = '+'.join(
|
| 169 |
+
map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))
|
| 170 |
+
|
| 171 |
+
if timestamps_to_cut:
|
| 172 |
+
video_file = ffmpeg.input(video_in)
|
| 173 |
+
video = video_file.video.filter(
|
| 174 |
+
"select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
|
| 175 |
+
audio = video_file.audio.filter(
|
| 176 |
+
"aselect", f'({between_str})').filter("asetpts", "N/SR/TB")
|
| 177 |
+
|
| 178 |
+
output_video = f'./videos_out/{video_file_name}.mp4'
|
| 179 |
+
ffmpeg.concat(video, audio, v=1, a=1).output(
|
| 180 |
+
output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
|
| 181 |
+
else:
|
| 182 |
+
output_video = video_in
|
| 183 |
+
|
| 184 |
+
tokens = [(token[2:], token[0] if token[0] != " " else None)
|
| 185 |
+
for token in filtered]
|
| 186 |
+
|
| 187 |
+
total_cuts_since_reboot += 1
|
| 188 |
+
ping("video_cuts")
|
| 189 |
+
print("\n\ntotal_cuts_since_reboot: ", total_cuts_since_reboot, "\n\n")
|
| 190 |
+
return (tokens, output_video)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
async def query_api(audio_bytes: bytes):
|
| 194 |
+
"""
|
| 195 |
+
Query for Huggingface Inference API for Automatic Speech Recognition task
|
| 196 |
+
"""
|
| 197 |
+
payload = json.dumps({
|
| 198 |
+
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
|
| 199 |
+
"parameters": {
|
| 200 |
+
"return_timestamps": "char",
|
| 201 |
+
"chunk_length_s": 10,
|
| 202 |
+
"stride_length_s": [4, 2]
|
| 203 |
+
},
|
| 204 |
+
"options": {"use_gpu": False}
|
| 205 |
+
}).encode("utf-8")
|
| 206 |
+
async with aiohttp.ClientSession() as session:
|
| 207 |
+
async with session.post(API_URL, headers=headers, data=payload) as response:
|
| 208 |
+
print("API Response: ", response.status)
|
| 209 |
+
if response.headers['Content-Type'] == 'application/json':
|
| 210 |
+
return await response.json()
|
| 211 |
+
elif response.headers['Content-Type'] == 'application/octet-stream':
|
| 212 |
+
return await response.read()
|
| 213 |
+
elif response.headers['Content-Type'] == 'text/plain':
|
| 214 |
+
return await response.text()
|
| 215 |
+
else:
|
| 216 |
+
raise RuntimeError("Error Fetching API")
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def ping(name):
|
| 220 |
+
url = f'https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}'
|
| 221 |
+
print("ping: ", url)
|
| 222 |
+
|
| 223 |
+
async def req():
|
| 224 |
+
async with aiohttp.ClientSession() as session:
|
| 225 |
+
async with session.get(url) as response:
|
| 226 |
+
print("pong: ", response.status)
|
| 227 |
+
asyncio.create_task(req())
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# ---- Gradio Layout -----
|
| 231 |
+
video_in = gr.Video(label="Video file", elem_id="video-container")
|
| 232 |
+
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
|
| 233 |
+
video_out = gr.Video(label="Video Out")
|
| 234 |
+
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
|
| 235 |
+
examples = gr.Dataset(components=[video_in], samples=VIDEOS, type="index")
|
| 236 |
+
|
| 237 |
+
css = """
|
| 238 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
| 239 |
+
#\\31 3 { max-width: 540px; }
|
| 240 |
+
.output-markdown {max-width: 65ch !important;}
|
| 241 |
+
#video-container{
|
| 242 |
+
max-width: 40rem;
|
| 243 |
+
}
|
| 244 |
+
"""
|
| 245 |
+
with gr.Blocks(css=css) as demo:
|
| 246 |
+
transcription_var = gr.State()
|
| 247 |
+
timestamps_var = gr.State()
|
| 248 |
+
with gr.Row():
|
| 249 |
+
with gr.Column():
|
| 250 |
+
gr.Markdown("""
|
| 251 |
+
# Edit Video By Editing Text
|
| 252 |
+
This project is a quick proof of concept of a simple video editor where the edits
|
| 253 |
+
are made by editing the audio transcription.
|
| 254 |
+
Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
|
| 255 |
+
with a fine tuned [Wav2Vec2 model using Connectionist Temporal Classification (CTC)](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self)
|
| 256 |
+
you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
|
| 257 |
+
""")
|
| 258 |
+
|
| 259 |
+
with gr.Row():
|
| 260 |
+
|
| 261 |
+
examples.render()
|
| 262 |
+
|
| 263 |
+
def load_example(id):
|
| 264 |
+
video = SAMPLES[id]['video']
|
| 265 |
+
transcription = SAMPLES[id]['transcription'].lower()
|
| 266 |
+
timestamps = SAMPLES[id]['timestamps']
|
| 267 |
+
|
| 268 |
+
return (video, transcription, transcription, timestamps)
|
| 269 |
+
|
| 270 |
+
examples.click(
|
| 271 |
+
load_example,
|
| 272 |
+
inputs=[examples],
|
| 273 |
+
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
| 274 |
+
queue=False)
|
| 275 |
+
with gr.Row():
|
| 276 |
+
with gr.Column():
|
| 277 |
+
video_in.render()
|
| 278 |
+
transcribe_btn = gr.Button("Transcribe Audio")
|
| 279 |
+
transcribe_btn.click(speech_to_text, [video_in], [
|
| 280 |
+
text_in, transcription_var, timestamps_var])
|
| 281 |
+
|
| 282 |
+
with gr.Row():
|
| 283 |
+
gr.Markdown("""
|
| 284 |
+
### Now edit as text
|
| 285 |
+
After running the video transcription, you can make cuts to the text below (only cuts, not additions!)""")
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
with gr.Column():
|
| 289 |
+
text_in.render()
|
| 290 |
+
with gr.Row():
|
| 291 |
+
cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
|
| 292 |
+
# send audio path and hidden variables
|
| 293 |
+
cut_btn.click(cut_timestamps_to_video, [
|
| 294 |
+
video_in, transcription_var, text_in, timestamps_var], [diff_out, video_out])
|
| 295 |
+
|
| 296 |
+
reset_transcription = gr.Button(
|
| 297 |
+
"Reset to last trascription", elem_id="reset_btn")
|
| 298 |
+
reset_transcription.click(
|
| 299 |
+
lambda x: x, transcription_var, text_in)
|
| 300 |
+
with gr.Column():
|
| 301 |
+
video_out.render()
|
| 302 |
+
diff_out.render()
|
| 303 |
+
with gr.Row():
|
| 304 |
+
gr.Markdown("""
|
| 305 |
+
#### Video Credits
|
| 306 |
+
|
| 307 |
+
1. [Cooking](https://vimeo.com/573792389)
|
| 308 |
+
1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
|
| 309 |
+
1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
|
| 310 |
+
""")
|
| 311 |
+
demo.queue()
|
| 312 |
+
if __name__ == "__main__":
|
| 313 |
+
demo.launch(debug=True)
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
libsndfile1
|
| 2 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio==3.35.2
|
| 4 |
+
datasets
|
| 5 |
+
librosa
|
| 6 |
+
ffmpeg-python
|
| 7 |
+
python-dotenv
|
| 8 |
+
aiohttp
|