Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
app = FastAPI(title="MobileLLM-Pro API", description="Public API for MobileLLM-Pro")
|
| 6 |
+
|
| 7 |
+
# Load model & tokenizer once at startup
|
| 8 |
+
MODEL_PATH = "/app/model"
|
| 9 |
+
print("🧠 Loading tokenizer and model...")
|
| 10 |
+
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
MODEL_PATH,
|
| 14 |
+
torch_dtype=torch.float16,
|
| 15 |
+
low_cpu_mem_usage=True,
|
| 16 |
+
trust_remote_code=True
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
model.to(device)
|
| 21 |
+
model.eval()
|
| 22 |
+
print(f"✅ Model loaded on {device}!")
|
| 23 |
+
|
| 24 |
+
@app.get("/")
|
| 25 |
+
def root():
|
| 26 |
+
return {"message": "MobileLLM-Pro API is running!"}
|
| 27 |
+
|
| 28 |
+
@app.get("/generate")
|
| 29 |
+
def generate(prompt: str, max_tokens: int = 50):
|
| 30 |
+
try:
|
| 31 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 32 |
+
outputs = model.generate(
|
| 33 |
+
**inputs,
|
| 34 |
+
max_new_tokens=max_tokens,
|
| 35 |
+
do_sample=True,
|
| 36 |
+
temperature=0.7,
|
| 37 |
+
pad_token_id=tokenizer.eos_token_id
|
| 38 |
+
)
|
| 39 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 40 |
+
return {"input": prompt, "output": result}
|
| 41 |
+
except Exception as e:
|
| 42 |
+
return {"error": str(e)}
|