Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| title = "πκ³ λ―Ό ν΄κ²° λμ μΆμ² μ±λ΄π" | |
| description = "κ³ λ―Όμ΄ λ¬΄μμΈκ°μ? κ³ λ―Ό ν΄κ²°μ λμμ€ μ± μ μΆμ²ν΄λ립λλ€" | |
| examples = [["μμ¦ μ μ΄ μ μ¨λ€"], ["νλΆμ΄ μ μλΌμ§ μμ"]] | |
| # model = SentenceTransformer('jhgan/ko-sroberta-multitask') | |
| df = pd.read_pickle('BookData_emb.pkl') | |
| df_emb = df[['μνμλ² λ©']].copy() | |
| def recommend(message): | |
| answer = df.loc[df_emb['μνμλ² λ©'][0]] | |
| # embedding = model.encode(message) | |
| # df_emb['거리'] = df_emb['μνμλ² λ©'].map(lambda x: cosine_similarity([embedding], [x]).squeeze()) | |
| # answer = df.loc[df_emb['거리'].idxmax()] | |
| # Book_title = answer['μ λͺ©'] | |
| # Book_author = answer['μκ°'] | |
| # Book_publisher = answer['μΆνμ¬'] | |
| # Book_comment = answer['μν'] | |
| return answer | |
| gr.ChatInterface( | |
| fn=recommend, | |
| textbox=gr.Textbox(placeholder="λ§κ±Έμ΄μ£ΌμΈμ..", container=False, scale=7), | |
| title=title, | |
| description=description, | |
| theme="soft", | |
| examples=examples, | |
| retry_btn="λ€μ보λ΄κΈ° β©", | |
| undo_btn="μ΄μ μ± μμ β", | |
| clear_btn="μ μ± μμ π«").launch() |