Spaces:
Runtime error
Runtime error
| import asyncio | |
| from llama_index.core import Document | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from llama_index.core.node_parser import SentenceSplitter | |
| from llama_index.core.ingestion import IngestionPipeline | |
| from llama_index.core import SimpleDirectoryReader | |
| reader = SimpleDirectoryReader(input_dir=r"C:\Users\so7\AppData\Local\Programs\Python\Python313\RAG") | |
| documents = reader.load_data() | |
| # create the pipeline with transformations | |
| pipeline = IngestionPipeline( | |
| transformations=[ | |
| SentenceSplitter(chunk_overlap=0), | |
| HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), | |
| ] | |
| ) | |
| # Define an async function to handle the pipeline | |
| async def main(): | |
| # Create the pipeline with transformations | |
| pipeline = IngestionPipeline( | |
| transformations=[ | |
| SentenceSplitter(chunk_overlap=0), | |
| HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), | |
| ] | |
| ) | |
| # Use await inside the async function | |
| nodes = | |
| await pipeline.arun(documents=[Document.example()]) | |
| # Optional: Do something with the nodes (e.g., print them) | |
| print(nodes) | |
| # Run the async function using asyncio | |
| if __name__ == "__main__": | |
| asyncio.run(main()) | |
| import chromadb | |
| from llama_index.vector_stores.chroma import ChromaVectorStore | |
| from llama_index.core.ingestion import IngestionPipeline | |
| from llama_index.core.node_parser import SentenceSplitter | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| db = chromadb.PersistentClient(path="./pl_db") | |
| chroma_collection = db.get_or_create_collection("ppgpl") | |
| vector_store = ChromaVectorStore(chroma_collection=chroma_collection) | |
| pipeline = IngestionPipeline( | |
| transformations=[ | |
| SentenceSplitter(chunk_size=25, chunk_overlap=0), | |
| HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), | |
| ], | |
| vector_store=vector_store, | |
| ) | |
| from llama_index.core import VectorStoreIndex | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
| index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model) | |
| from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI | |
| llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct") | |
| query_engine = index.as_query_engine( | |
| llm=llm, | |
| response_mode="tree_summarize", | |
| ) | |
| query_engine.query("Солнце на третей ступени") | |
| # The meaning of life is 42 |